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Abstract: This study presents a parameter retrieval technique based on the state space approach for the electromagnetic
characterisation of biaxial anisotropic structures. First, the formulation of a 4 × 4 transition matrix method for the analysis of
forward scattering problems is reviewed; then a procedure for the extraction of the constitutive tensor parameters of a biaxial
anisotropic medium from the knowledge of reflection and transmission coefficients is implemented. In the proposed retrieval
method, scattering parameters are employed for a plane wave incident normally and obliquely on a biaxial anisotropic slab.
This characterisation algorithm is based on the state transition matrix and its properties in the biaxial anisotropic layers are
presented as two theorems. In this method, it is not necessary to solve directly the wave equation in complex media and then
apply the boundary conditions. To demonstrate the validity of the proposed method, the constitutive parameters of two non-
dispersive and dispersive biaxial anisotropic slabs at microwave frequencies are retrieved. From the numerical results, one can
find out that when the scattering parameters are combined with the properties of a state transition matrix, a robust technique
is provided for the parameter retrieval of the anisotropic structures.
1 Introduction

Complex artificial electromagnetic structures with interesting
electromagnetic properties have generated an enormous
research interest over the years. Many natural or artificial
electromagnetic materials exhibit unusual properties that
would be beneficial to engineers if they were artificially
designed to suit our needs. Therefore the study and the
electromagnetic characterisation of such complex structures
are recognised subjects which date back to the last decade.
Recently, with the increased interest in electromagnetic

metamaterials (MTMs) and their wide applications in
different microwave devices [1–5], various methods have
been proposed for retrieving the effective electromagnetic
parameters of such artificial structures. Some of these
methods have been based on the electromagnetic fields
inside the MTM structures, and so they are not practical for
application in the experimental setups measurements [6–8].
In another well-known method, parameter extraction of the
electromagnetic MTM structures is achieved by using
analytical dispersion models [9, 10]. As a manifest
disadvantage, the application of this method for complex
structures is difficult. A more commonly used scattering
parameter method is generally based on the inversion of the
reflection and the transmission parameters of a plane wave
incident on the MTM structure to give effective
electromagnetic parameters [11–13]. Many papers have
discussed the application of this method in different media
and situations [14–19]. Most attempts at measuring the
MTMs electromagnetic parameters at an oblique incidence
or accounting for anisotropy or bianisotropy have relied on
fully numerical optimisation and curve fitting techniques
[20, 21].
The objective of the present paper is to characterise the

biaxial anisotropic media using the state space approach.
Although the application of the state transition matrix
method in the forward scattering problems has been well
studied over the years [22–27], its application in the
formulation for the inverse scattering problems of the biaxial
anisotropic mediums has not been reported. In the present
paper, an electromagnetic characterisation procedure is
presented for retrieving the constitutive tensor parameters of
a biaxial anisotropic slab by using the scattering parameters
based on the state transition matrix and its characteristics
expressed as two theorems. The proposed technique allows
for a characterisation at oblique incidences.
This paper is organised as follows. In Section 2, the

analysis of the forward problem through the state space
approach is reviewed. Two interesting properties of the state
transition matrix of the biaxial anisotropic layers are
presented in Section 3. Section 4 deals with the formulation
of the inverse scattering of a biaxial anisotropic medium
based on the 4 × 4 state transition matrix method. In
Section 5, some numerical results are provided to validate
the proposed formulation, from which it is found that the
proposed scheme works well.
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2 Forward problem analysis

In this section, we review the analysis of the problem of plane
wave scattering from a biaxial anisotropic layer which has
diagonal constitutive parameters such as

��1 = 10diag 1xx, 1yy, 1zz

( )
,

��m = m0diag mxx, myy, mzz

( )
(1)

where ɛ0 and μ0 are the free space permittivity and
permeability, respectively. It is assumed that the transverse
electric (TE) or transverse magnetic (TM) polarised plane
waves are obliquely incident at the angle θ0 from the free
space to the anisotropic slab, as shown in Fig. 1. The planar
structure is of infinite extent along the y-direction, and hence
the derivative of the fields with respect to the y variable
vanishes. In addition, the derivative of the fields with respect
to the x variable in the slab must take on the same value as
in the free space in order to satisfy the boundary conditions
on the tangential fields at the boundaries, and hence ∂/∂x =
−jk0 sinθ0 (assuming a time harmonic field with ejωt) where
k0 is the free space wave number. By substituting the
constitutive relations (1) into Maxwell’s curl equations and
by eliminating the z-components of the electric and the
magnetic fields one can write

d

dz

�ET
�HT

( )
= Gv

�ET
�HT

( )
(2)

where �ET = (Ex, Ey) and �HT = (Hx, Hy) are the transverse
components of the electric and the magnetic fields,
respectively, and the Γω-matrix is given by

Gv = v

c
G = v

c

0 0 0 G14

0 0 G23 0
0 G32 0 0
G41 0 0 0

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (3)

where

G14 = jh0 −myy +
1

1zz
sin2 u0

( )
(4a)

 
 

 

Fig. 1 Biaxial anisotropic slab exposed to a linearly polarised
plane wave
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G23 = jh0mxx (4b)

G32 = jh−1
0 1yy −

1

mzz
sin2 u0

( )
(4c)

G41 = −jh−1
0 1xx (4d)

where ω is the angular frequency and h0 =
��������
m0 / 10

√
is the

intrinsic impedance of the free space.
We define a 4 × 4 state transition matrix Φ that relates the

transverse components of the electric and the magnetic
fields at the two boundaries of a chiral slab

�ET(0)
�HT(0)

( )
= F

�ET(d)
�HT(d)

( )

= F1

( )
2×2

F2

( )
2×2

F3

( )
2×2

F4

( )
2×2

( )
�ET(d)
�HT(d)

( )
(5)

where the state transition matrix Φ is given by

F = e−Gvd (6)

Several methods have been proposed for the computation of
the exponential of a square matrix [28, 29], such as the
expansion in the power series, the Laplace transform, the
Jordan normal form and the Cayley–Hamilton theorem
discussed in Appendix 2.
Generally, we can define the reflection and the transmission

matrices as

�E
r
T(z = 0) = Rxx Rxy

Ryx Ryy

( )
�E
i
T(z = 0) (7)

�E
t
T(z = d) = Txx Txy

Tyx Tyy

( )
�E
i
T(z = 0) (8)

where the superscripts i, r and t denote the incident, the
reflected and the transmitted fields, respectively. However,
in the case of the biaxial anisotropic slab, the crosspolarised
components of the reflection and the transmission
coefficients are zero. After some simple manipulations on
(5), we may write

�E
i
T(0)+ �E

r
T(0) = F1

�E
t
T(d)+F2

�H
t
T(d) (9)

Z−1
0

�E
i
T(0)− Z−1

0
�E
r
T(0) = F3

�E
t
T(d)+F4Z

−1
0

�E
t
T(d) (10)

where the wave impedance matrix Z0 is defined as

Z0 = 0 h0 cos u0
−h0/ cos u0 0

( )
(11)

By using (9) and (10) and by considering (7) and (8), after
some simple matrix manipulations one obtains [22]

R = F1Z0 +F2 − Z0 F3Z0 +F4

( )[ ]
× F1Z0 +F2 + Z0 F3Z0 +F4

( )[ ]−1
(12)

T = 2Z0 F1Z0 +F2 + Z0 F3Z0 +F4

( )[ ]−1
(13)
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3 Properties of the state transition matrix
of a biaxial anisotropic slab

In this section, we introduce and prove two interesting
properties of the state transition matrix Φ of the biaxial
anisotropic slabs which can be used for the proposed
parameter retrieval algorithm which will be discussed in the
next section.

Theorem 1: The determinant of the state transition matrix Φ
of a biaxial anisotropic slab is equal to unity. Its proof is
presented in Appendix 1.

Theorem 2: The absolute values of the entries of the state
transition matrix (Φ) and its inverse (Φ−1) are equal. As
proved in Appendix 2, the state transition matrix of a
biaxial anisotropic slab and its inverse are

F =
F11 0 0 F14
0 F22 F23 0
0 F32 F22 0

F41 0 0 F11

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (14a)

F−1 =
F11 0 0 −F14

0 F22 −F23 0
0 −F32 F22 0

−F41 0 0 F11

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (14b)

Observe that the 4 × 4 matrix Φ has only six distinct non-zero
entries, namelyΦ11,Φ14,Φ22,Φ23,Φ32 andΦ41, respectively,
which are given in Appendix 2.

 
 

 

4 Formulation of the parameter retrieval
technique

This section deals with the formulation of the electromagnetic
characterisation method for the retrieval of the constitutive
tensor parameters of a biaxial anisotropic slab. The first step
in the inverse problem is to find the state transition matrix
Φ by using the scattering parameters.
It is clear that four tensor parameters ɛxx, ɛyy, μxx and μyy are

active when the slab is normally illuminated by the TE and
the TM plane waves, while two other tensor parameters ɛzz
and μzz are also active when the slab is obliquely
illuminated. Hence, for retrieving all the constitutive tensor
parameters of a biaxial anisotropic slab, the scattering
parameters corresponding to the illuminations at two
different angles of incidence are required.
4.1 Determination of the state transition matrices
at oblique and normal incidences

First, let us consider the perpendicular polarisation incidence,
where the TE incident wave is assumed to be incident from
the free space to the slab at the angle θ0. Hence, (9) and
(10) may be rewritten as

1+ Er
y = Foblique

22 −Foblique
23

h0
cos u0

( )
Et
y (15a)
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− 1

h0
cos u0 1− Er

y

( )
= Foblique

32 −Foblique
22

h0
cos u0

( )
Et
y

(15b)

where the oblique superscript denotes an oblique incidence.
Then, consider the TM incident wave, for which (9) and
(10) can be rewritten as

1+ Er
x = Foblique

11 + Foblique
14

h0 cos u0

( )
Et
x (16a)

1

h0 cos u0
1− Er

x

( ) = F
oblique
41 + F

oblique
11

h0 cos u0

( )
Et
x (16b)

Observe that by using the measured reflection and
transmission coefficients, a simple set of four equations is
derived, whereas the number of the distinct and the
non-zero elements of the state transition matrix Φoblique in
an oblique incidence (considered as unknown parameters of
the problem) is six. Here, our proposed method for equating
the number of the unknowns and the equations is to use the
properties of the state transition matrix of the biaxial
anisotropic slab discussed in the previous section. In fact,
by considering the presented theorems, the necessary and
sufficient equations are provided to uniquely determine the
unknown entries of an Φoblique-matrix.
It is clear that in the case of a normal incidence, we can

consider (15) and (16) assuming θ0 = 0° and the state
transition matrix Φnormal, where a normal superscript
denotes a normal incidence. Similar to the previous case,
Φnormal can be determined by solving the obtained equations.

4.2 Determination of the constitutive tensor
parameters

Once the state transition matrix Φ (Φnormal and Φoblique) is
determined, the Γ-matrices (Γnormal and Γoblique) can be
subsequently identified as

G = − c

vd
ln(F) = − l0

2pd
ln(F) (17)

where c and λ0 are the speed of light and the wavelength in
free space, respectively. Once the Γnormal and Γoblique

matrices are obtained, the constitutive tensor parameters can
be determined by

1xx = jh0G
normal
41 (18a)

1yy = −jh0G
normal
32 (18b)

1zz = jh0 sin
2 u0 Goblique

14 − Gnormal
14

( )
(18c)

mxx = −jh−1
0 Gnormal

23 (19a)

myy = jh−1
0 Gnormal

14 (19b)

mzz = −jh−1
0 sin2 u0 G

oblique
32 − Gnormal

32

( )
(19c)

Briefly, the procedure of the electromagnetic characterisation
of the biaxial anisotropic materials from the knowledge of
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the normal and the oblique scattering parameters can be
summarised as follows:

Solve (15a)–(16b) by considering the oblique scattering
parameters along with Theorems 1 and 2 to find Φoblique.
Solve (15a)–(16b) by considering θ0 = 0 and the normal
S-parameters along with Theorems 1 and 2 to find Φnormal.
Find the Γ-matrices (Γnor and Γobl) by using (17).
Determine the constitutive tensor parameters by using
(18a)–(19c).

4.3 Investigation of a probable ambiguity in the
results

Notice that for the Γ-matrix with the eigenvalues γ1, γ2,
γ3 and γ4, and the eigenvectors �V 1, �V 2, �V 3 and �V 4,
respectively, there exists a matrix M such that

G = MLM−1 (20)

where

M = �V 1, �V 2, �V 3, �V 4

[ ]
(21)

and Λ is a diagonal matrix as diag(γ1, γ2, γ3, γ4). As proved in
Appendix 1, one can write

F = Mdiag e−g1vd/c, e−g2vd/c, e−g3vd/c, e−g4vd/c
( )

M−1

(22)

On considering (20) and (22) it is clear that Γ and Φ have an
identical set of eigenvectors �V n. Note that in the proposed
characterisation method, once the state transition matrix Φ
is determined, its eigenvalues λn (n = 1, 2, 3 and 4,
respectively) and the eigenvectors are readily obtained.
Therefore, for the computation of the Γ-matrix through
(20), the eigenvalues γn are

gn = − c

vd
lnln = − c

vd
ln ln
∣∣ ∣∣+ j arg ln + 2mp

( )[ ]
(23)

where m can be an arbitrary integer number at any frequency.
The resulting uncertainty because of the existence ofm in (23)
is referred to as a branching problem, which is due to the
multibranch form of a complex logarithmic function.
Clearly, if the thickness d is much smaller than the free
space wavelength, the eigenvalues γn and consequently the
Γ-matrix are unambiguously identified.
Here, we can use an advanced and well-known technique

based on the Kramers–Kronig (K–K) relations for resolving
the branch selection problem which has been well discussed
in ordinary and chiral MTMs [13, 30, 31]. On considering
(3), one can easily see that the eigenvalues of Γnormal

are g1 = − g2 = −j �������
myy1xx

√ = −jn1 and g3 = − g4 =
j �������

mxx1yy
√ = jn2, respectively. Note that the real and the
imaginary parts of n1 and n2 satisfy the K–K relations

Re n1(2)(v)
{ }

= Re n1(2)(1)
{ }

− 2

p
P.V.

∫1
0

uIm n1(2)(u)
{ }
u2 − v2

du (24)
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Im n1(2)(v)
{ }

= 2v

p
P.V.

∫1
0

Re n1(2)(u)
{ }

− Re n1(2)(1)
{ }

u2 − v2
du (25)

where P.V. refers to the principal value of the integral defined
as follows

P.V.

∫1
−1

f (u)du =
∫1
−1

P.V. f (u)
( )

du

= lim
eps�0

∫v−eps

−1
f (u)du+

∫1
v+eps

f (u)du

[ ]
(26)

Therefore we can rewrite (24) for γ1 and γ4 as

Im g1(4)(v)
{ }

= Im g1(4)(1)
{ }

+ 2

p
P.V.

∫1
0

uRe g1(4)(u)
{ }
u2 − v2

du (27)

Note that the parameter retrieval procedure takes advantage of
the fact that the real parts of the eigenvalues are not affected
by the branches of the logarithmic function and can be
unambiguously determined by using (23). Therefore the
imaginary parts of the eigenvalues can be calculated from
(27) without any ambiguity. However, note that in the
simulations and the experiments, the S-parameters are
measured in limited frequency ranges, and hence
the integration of (27) should be truncated. In addition, in
the inverse problem the values of γn(∞) are unknown, and
hence (27) yields an approximated solution determining the
general behaviour of the exact solution properly.
Note that although it is shown that the constitutive tensor

parameters of the biaxial anisotropic materials can be
successfully retrieved without a multibranch ambiguity even
for a thick material, which is one of the main concerns for
the material characterisation, the phase ambiguity in
materials with large-valued parameters cannot be
completely solved by using the K–K relationships [32].
4.4 Discussions

In the standard full wave methods [11–20], we should directly
solve the set of the obtained non-linear equations from the
boundary conditions to derive the analytical formulae for
the constitutive tensor parameters of the unknown slab in
terms of the reflection and the transmission coefficients. In
such methods, the identification of the multibranch
ambiguity which is one of the main concerns for the
material characterisation requires having these analytical
formulae where their derivations in complex structures such
as a biaxial anisotropic medium are not simple. In the
proposed characterisation method, it is not necessary to
obtain the eigenwaves of the biaxial anisotropic layer
through a direct solution of the wave equation. In addition,
a derivation of the analytical formulae for the unknown
constitutive parameters in terms of the reflection and the
transmission coefficients is not required and only some
simple matrix operations should be performed.
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5 Numerical examples and results

Two examples are provided to validate the proposed
formulation. Hitherto, we used the Cayley–Hamilton
theorem for computing the exponential and the logarithm of
a square matrix, while in the following numerical examples
for simplicity, the expm and the logm commands in
MATLAB are used.

5.1 Non-dispersive biaxial anisotropic slab

As the first example, consider a non-dispersive biaxial
anisotropic slab with the following constitutive tensor
parameters

��1 = 10diag 4− j0.5, 7− j0.1, 2− j2
( )

(28a)

��m = m0diag 1− j0.3, 2, 5− j2
( )

(28b)

Assume that the thickness of the slab and the excitation
frequency are 5 mm and 2 GHz, respectively. The forward
problem analysis shows that the reflection and the
transmission coefficients are given by Rxx = −0.143−
j0.126, Ryy =−0.322− j0.371, Txx = 0.767− j0.538 and Tyy
= 0.593− j0.569 for a normal incidence, and Rxx =−0.091
− j0.077, Ryy =−0.393− j0.396, Txx = 0.784− j0.525 and
Tyy = 0.536− j0.569 for an oblique incidence at θ0 = 30°,
respectively. The proposed reconstruction technique has
been applied to the obtained reflection and transmission
coefficients and the discussed set of equations in Section 4
has been solved analytically by using MATLAB. The
elements of the computed Φ and Γ matrices corresponding
to the normal and the oblique incidences and the retrieved
constitutive parameters of the slab are presented in Table 1.
The comparison among the parameters generated by the
proposed technique and the exact ones illustrates the good
behaviour of the technique.

5.2 Dispersive biaxial anisotropic slab

As the second example, consider a biaxial anisotropic slab
with thickness d = 0.5 mm whose constitutive parameters
have the following dispersion relations [16]

1 = 1b −
A1f

2
e0

f 2 − f 2e0 − jf fe0d1
(29a)

m = mb − Am f
2

f 2 − f 2m0 − jf fm0 dm
(29b)

 
 

 

Table 1 Computed Φ and Γ matrices and constitutive tensor parame

Computed Φnormal Computed Φoblique Computed Γnormal

Φ11 = 0.8295 +
j0.0207

Φ11 = 0.8353 +
j0.0252

Γ14 = 0.0003− j753.98

Φ14 =−1.1145 +
j148.84

Φ14 = 3.3434 +
j144.53

Γ23 = 113.10 + j376.99

Φ22 = 0.8506 +
j0.0458

Φ22 = 0.8516 +
j0.0459

Γ32 = 0.0003 + j0.0186

Φ23 =−21.2649−
j73.3579

Φ23 =−21.2707−
j73.3860

Γ41 =−0.0013− j0.0106

Φ32 = 0.0000−
j0.0037

Φ32 = 0.0000−
j0.0037

other elements are in the
order of 10−16

Φ41 = 0.0002 +
j0.0021

Φ41 = 0.0002 +
j0.0021

636
& The Institution of Engineering and Technology 2014
where fe0, fm0, ɛb, μb, δɛ and δμ are the electric and magnetic
resonant frequencies, the background relative permittivity and
permeability and the damping factors, respectively. Assume
that ɛb = 4.2, μb = 1, fe0 = 4 GHz and fm0 = 6 GHz, for all
the tensors elements, Aɛ = 1, 0.5, 1.2 and δɛ = 0.02, 0.1,
0.05 for ɛxx, ɛyy and ɛzz, respectively. Also, assume Aμ = 0.1,
0.01, 0.05 and δμ = 0.005, 0.01, 0.05 for μxx, μyy and μzz,
respectively. The amplitudes and the phases of the
reflection and the transmission coefficients of this slab
against the frequency obtained from the forward problem
analysis at the normal and the oblique incidences at θ0 =
60° are illustrated in Fig. 2.
The proposed retrieval method based on the state transition

matrix method is applied to the reflection and the transmission
coefficients, and the Φ and the Γ matrices at the normal and
the oblique incidences are determined. For instance, the real
and the imaginary parts of the eigenvalues of the Φ and the
Γ matrices at a normal incidence are shown in Figs. 3 and
4, respectively. Observe that the γn curves are continuous
and all of them are determined without any ambiguity.
The approximate curves for the imaginary parts of γn
obtained by the K–K relation, that is, (27), are also reported
in Fig. 4b. As stated previously, in the inverse problem, the
values of γn(∞) are unknown, and hence (27) yields an
approximate solution determining the general behaviour of
the exact solution, which causes the difference between the
exact and the approximate solutions. Once the Γ-matrices at
the normal and the oblique incidences are determined, the
constitutive tensor parameters are computed by (18) and
(19) as shown in Fig. 5. Observe that there is an excellent
agreement between the true and the retrieved values of
the constitutive parameters of the anisotropic slab. These
results show that in the electromagnetic characterisation
of a 0.5-mm-thick anisotropic slab, no branching problem
occurs.
Now, consider a further study, a 5-mm-thick biaxial

anisotropic slab ten times thicker than the former one. The
amplitudes and the phases of the reflection and the
transmission coefficients at the normal and the oblique
incidences are shown in Fig. 6. The real and the imaginary
parts of the eigenvalues of the obtained Φ and Γ matrices
are shown in Figs. 7 and 8, respectively. Note that, unlike
the prior case, there are considerable discontinuities in the
γn curves which may be attributed to the branching problem
in (23). However, no discontinuity is seen in the
approximate solutions by the K–K relations. Therefore,
considering the K–K solutions, the discontinuities which
have an allowable value 2πc/ωd about 6 GHz should be
removed and the nearest solution to the K–K one is
achieved. The modified curve of γ3 =−γ4 is also shown in
ters of a biaxial anisotropic slab

Computed Γoblique Computed ɛ Computed μ

Γ14 =−23.562− j730.42 ɛxx = 4.000−
j0.5000

μxx = 1.0000−
j0.3000

Γ23 = 113.10 + j376.99

Γ32 = 0.0003 + j0.0185 ɛyy = 7.0000−
j0.1000

μyy = 2.0000 +
j0.0000

Γ41 =−0.0013− j0.0106

other elements are in the
order of 10−16

ɛzz = 2.0000−
j2.0000

μzz = 4.9996−
j2.0006
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Fig. 2 Amplitudes and phases of the reflection and the transmission coefficients of a dispersive biaxial anisotropic slab with thickness d = 0.5
mm at

a and b Normal
c and d Oblique incidence with θ0 = 60°

Fig. 3 For instance, the real and the imaginary parts of the eigenvalues of the Φ and Γ at a normal incidence

a Real
b Imaginary parts of the eigenvalues of the Φ-matrix for a biaxial anisotropic slab with thickness d = 0.5 mm at a normal incidence

Fig. 4 For instance, the real and the imaginary parts of the eigenvalues of the Φ and Γ at a normal incidence

a Real
b Imaginary parts of the eigenvalues of the Γ-matrix for a biaxial anisotropic slab with thickness d = 1.6 mm at a normal incidence
Obtained approximate results by the K–K relations for γ1 =−γ2 and γ3 =−γ4 are shown with hollow and solid circles, respectively

www.ietdl.org
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Fig. 5 Real and imaginary parts of the retrieved constitutive parameters of a biaxial anisotropic slab

a and b Relative permittivity
c and d Relative permeability
True values of the parameters are shown with circles

www.ietdl.org

 
 

 

Fig. 8a. Observe that as expected, the obtained eigenvalues of
the Γ-matrix are independent of the slab thickness and are the
same as the previous values. After a unique determination of
the Γ matrices at the normal and the oblique incidences, the
Fig. 6 Amplitudes and phases of the reflection and the transmission
d = 5 mm at

a and b Normal
c and d Oblique incidence with θ0 = 60°

638
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constitutive tensor parameters of the slab are computed. The
purpose of the current paper was to demonstrate the
applicability and the robustness of the K–K relations for
removing the branching problem.
coefficients of a dispersive biaxial anisotropic slab with thickness

IET Microw. Antennas Propag., 2014, Vol. 8, Iss. 9, pp. 632–641
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Fig. 7 Real and imaginary parts of the eigenvalues of the obtained Φ and Γ

a Real
b Imaginary parts of the eigenvalues of the Φ-matrix for a biaxial anisotropic slab with thickness d = 5 mm at a normal incidence

Fig. 8 Real and imaginary parts of the eigenvalues of the obtained Φ and Γ

a Imaginary parts of γ3 =−γ4 for a biaxial anisotropic slab with thickness d = 5 mm at a normal incidence
b Imaginary parts γ1 =−γ2. The obtained approximate results by the K–K are also shown
c Real parts of γ1 =−γ2 and γ3 =−γ4
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6 Summary and conclusions

In this paper, an analytical frequency-domain formulation is
presented for the inverse problem of a biaxial anisotropic
medium based on the state space approach. The proposed
characterisation algorithm is mainly based on the state
transition matrix and its interesting properties, presented as
two proven theorems. In addition, the probable cause of
ambiguity in the proposed method is fully investigated and
IET Microw. Antennas Propag., 2014, Vol. 8, Iss. 9, pp. 632–641
doi: 10.1049/iet-map.2013.0438
a robust technique based on the K–K relations is presented
to solve this challenge. Some numerical examples are given
to validate the performance of the proposed formulations.
From the numerical results, one can find that they work
well for the reconstruction of the constitutive tensor
parameters of an unknown biaxial anisotropic slab. In the
future, the proposed electromagnetic characterisation
method is expected to be used for retrieving the constitutive
parameters of generalised anisotropic materials.
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8 Appendix 1

For the Γ-matrix with the distinct eigenvalues γ1, γ2, γ3 and
γ4, respectively, there exists a matrix M such that Γ is equal
to MΛM−1 where Λ is a diagonal matrix in the form of
diag(γ1, γ2, γ3, γ4). The exponential function of the square
matrix −Γd is defined in terms of an infinite Taylor series as

e−Gd = I − Gd + 1

2!
G2d2 − 1

3!
G3d3 + · · · (30)

where I is a 4 × 4 identity matrix and the above series is
convergent for all the square matrices. By substituting
MΛM−1 in Γ2, we have

G2 = (MLM−1)(MLM−1) = ML(M−1M)LM−1

= ML2M−1 (31)

and all the powers of Γ are similarly reduced. Thus

e−Gd = M I − Ld + 1

2!
L2d2 − 1

3!
L3d3 + · · ·

[ ]
M−1

= Me−LdM−1 (32)

Since the determinant of a product of the square matrices is
the product of their determinants, the determinant of e−Γd is
equal to that of e−Λd which due to the diagonal nature of Λ
is exp[−(γ1 + γ2 + γ3 + γ4)d ]. Beside this, we know that the
sum of the eigenvalues of a square matrix is equal to the
sum of its diagonal elements [29]. Thus, according to (6),
the determinant of the state transition matrix F = e−Gvd of
a biaxial anisotropic slab is equal to unity. The proof is
complete.

9 Appendix 2

The Cayley–Hamilton theorem relates a matrix to its
characteristic polynomial [28, 29]. By using this theorem,
the exponential of the W-matrix can be simply calculated.
Assuming a 4 × 4 W-matrix with the distinct eigenvalues
w1, w2, w3 and w4, respectively, we can write the equations as

ewp =
∑3
q=0

cqw
q
p (33)

where p = 0, 1, 2 and 3, respectively. By solving this set of
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four linear equations, the unknown coefficients cq for q = 0, 1,
2 and 3, respectively, are determined. Finally, the exponential
of W can be written as

eW = c0I + c1W + c2W
2 + c3W

3 (34)

Assuming W =−Γωd, g1 = jωμ0d(−μyy + sin2θ0/εzz), g2 =
jωμ0μyyd, g3 = jωε0d(εyy−sin2θ0/μzz) and g4 = −jv101xxd,
respectively, the eigenvalues of W are given by

w
1
2

= +
�����
g1g4

√
, w

3
4

= +
�����
g2g3

√
(35)

By substituting these eigenvalues in (33) and by solving the
equations, the unknown coefficients cq for q = 0, 1, 2 and 3,
respectively, are fully determined

c0 =
w2
3 cosh(w1)− w2

1 cosh(w3)

w2
3 − w2

1

(36)

c1 =
w3
3 sinh(w1)− w3

1 sinh(w3)

w1w3 w2
3 − w2

1

( ) (37)

c2 = − cosh(w1)− cosh(w3)

w2
3 − w2

1

(38)

c3 = −w3 sinh(w1)− w1 sinh(w3)

w1w3 w2
3 − w2

1

( ) (39)
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Then, after some matrix manipulations in (34), the matrix
exponential Φ = e−Gvd c may be written as (14a) where

F11 = c0 + c2g1g4, F14 = c1g1 + c3g
2
1g4

F22 = c0 + c2g2g3, F23 = c1g2 + c3g
2
2g3

F32 = c1g3 + c3g
2
3g2, F41 = c1g4 + c3g

2
4g1

⎧⎨
⎩ (40)

For the computation of the inverse matrix Φ−1, we can use
the identity (e−Γωd/c)−1 = e+Γωd/c and compute e+Γωd/c. It is
evident that the eigenvalues remain unchanged rather than
the prior case. In this case, we should consider

e−W = c′0I+ c′1W + c′2W
2 + c′3W

3 (41)

and solve the four equations

e−wp =
∑3
q=0

c′qw
q
p (42)

where p = 0, 1, 2 and 3, respectively. It can be easily seen that
the coefficients of cq′ for q = 0, 1, 2 and 3, respectively, are
given by

c′0 = c0, c′1 = −c1, c′2 = c2, c′3 = −c3 (43)

After some simple matrix manipulations, one can obtain the
inverse matrix Φ−1 as presented in (14b).
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