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Abstract— In this paper, the propagation of electromagnetic 

waves through an infinite slab of biaxial chiral medium is 

analytically formulated for an arbitrary incidence using the 4×4 

transition matrix method. In this powerful method, a state vector 

differential equation is extracted whose solution is given in terms 

of a transition matrix relating the tangential field components at 

the input and output planes of the biaxial chiral layer. The 

validity of the method is verified using two typical examples at 

the microwave frequencies. 
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I.  INTRODUCTION 

The study of artificial composite structures as an important 
topic in electromagnetic research has been the subject of many 
endeavors over the years. Applications of such structures in 
microwave and millimeter wave regimes have prompted a 
renewed interest over the last decade leading to the design of 
different microwave devices, such as cavities, resonators, 
waveguides, and lenses [1]-[4] and has allowed for the 
realization of negative refraction indices [5]. Studying artificial 
bianisotropic media is a recognized subject which dates back to 
the last decades [6]. Unlike the ordinary materials, described by 
electric permittivity and magnetic permeability, bianisotropic 
media include a magneto-electric coupling yielding to 
interesting properties of the electromagnetic fields. The biaxial 
bianisotropic chiral medium is a special type of bianisotropic 
medum, where the chirality appears in two directions. A biaxial 
bianisotropic chiral slab can be realized by placing miniature 
wire spirals immersed in a host dielectric slab [7, 8]. One of the 
well-known applications of uni- and bi-axial chiral layers is in 
polarization transformers, whereby any polarization can be 
transformed into any other polarization [9]. 

The reflection and transmission properties of a plane wave 
incident normally or obliquely from free space to a uni- and 
biaxial bianisotropic chiral slab have been well studied over the 
years [10-12]. This paper presents the powerful 4×4 transition 
matrix method, where Maxwell’s equations in the biaxial chiral 
region are only cast into a 4×4 matrix formulation, where it is 
not necessary to specify the unintelligible eigenpolarizations of 
this layer. Then, the complete solution is derived by combining 
the boundary conditions at the interfaces with the transition 
matrix. 

The paper is organized as follows: In Sec. I, the differential 
equations describing the biaxial bianisotropic chiral slab are 
extracted, and the formulas of the reflection and transmission 
are then derived. Section III deals with the validation of the 
presented method based on the state space approach along with 
some example calculations. 

II. FORMULATION OF PROBLEM 

To obtain the solution for the reflection and transmission 
coefficients of a biaxial chiral layer, consider the problem 
illustrated in Fig. 1. The constitutive relations in such a biaxial 
chiral medium can be written as 
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where κ is the chirality parameter, and ε0 and µ0 are permittivity 
and permeability of free space. It is assumed that an arbitrarily 
polarized plane wave is incident from free space to the biaxial 
chiral slab at an oblique angle θ0. Substituting the constitutive 
equations into Maxwell’s equations, considering ∂/∂y = 0 

 

and 
∂/∂x = -jk0sinθ0 where k0 is the wave number in vacuum, the 
differential equations describing biaxial chiral layer are given 
by 
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where the elements of the Γ-matrix are given by: 
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where superscript r on ε and µ indicates relative permittivity 
and permeability, respectively; and c and ω are the speed of 
light in vacuum and the angular frequency, respectively. 

We may define a 4×4 transition matrix Φ that relates the 

transverse components of electric and magnetic fields at the 

two boundaries of the slab 
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Similar to state-space equations in linear control systems [13, 

14], it can be easily seen that the transition matrix Φ is given 

by 

 

-Γ
Φ = .e t

                                  (6) 

For the computation of the matrix, many methods have been 

proposed [14] such as expansion of Φ in a power series, 

methods based on diagonalization of matrix Γ, Cayley-

Hamilton theorem, expm command in MATLAB, etc. 

By introducing the reflection and transmission matrices, T 

and R, we can write: 
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where the superscripts i, r, and t denote the incident, reflected, 

and transmitted fields, respectively. If the transition matrix Φ 

is partitioned into four 2×2 submatrices, such that 
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Fig. 1. A typical biaxial chiral slab. The chirality appears in x and z directions. 

then equation (5) may be rewritten as 
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wherein Z0 is the wave impedance matrix given by: 
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Using Equations (10) and (11) and by considering Equations 

(7) and (8), after some matrix computations one can write 
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Once R and T matrices are determined, co- and cross-reflection 
and transmission coefficients could be identified as 
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III. NUMERICAL EXAMPLES 

In this section, in order to verify the validity of the method, 
two uni- and b-iaxial chiral slabs are considered and analyzed 
using the presented method. 

A.   Example 1 

Consider a uniaxial chiral slab with thickness of t = 5 mm, 
and the electromagnetic parameters εx = εy = εz = 3ε0, µx = µy = 
µz = µ0, and κ = 1.5. Assume a plane wave with unity amplitude 
and excitation frequency 10 GHz obliquely illuminating the 
uniaxial chiral slab. The reflected and transmitted powers 
versus the angle of incidence obtained by the proposed method 
and the exact results presented in [11] are shown in Fig. 2. 
Comparison between the two results illustrates the good 
behavior of the proposed method. 

B.   Example 2 

As the second example, consider a biaxial chiral slab with 
thickness of t = 20 cm, and the electromagnetic parameters εx = 
ε0, εy = 2ε0, εz = 4ε0, µx = 3µ0, µy = 1.5µ0, µz = µ0, and κ = 1.5. 
Assume a plane wave with unity amplitude and excitation 
frequency 1 GHz obliquely illuminating the biaxial chiral 

slab. Figure 3 shows the reflected and transmitted power 
obtained from the proposed method versus the angle of 
incidence.  

 

IV. CONCLUSIONS 

This paper presents an analytic formulation for reflection 

and transmission problems involving biaxial chiral layers. In 

the presented method, a 4×4 transition matrix that relates the 

transverse components of electric and magnetic fields at the 

two boundaries of the slab is employed and is combined with 

the boundary conditions. The validity of the presented method 

is achieved by providing some numerical examples and 

comparing the obtained results with those of other available 

methods for two special cases. As an interesting, significant, 

and applicable property of the presented method, it is not 

necessary to specify the eigenpolarizations of the biaxial chiral 

layers. In addition, the presented method can be used to 

analysis of the reflection and transmission problems involving 

more complex bianisotropic layers. In fact, the Γ-matrix 

should be only calculated for more complex layers and the 

next steps to obtain reflection and transmission matrices are 

the same procedure describing in this paper. 
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Fig. 3. The reflected power (a), and transmitted power (b) as a function of 

incident angle for biaxial chiral slab discussed in example 2. 
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Fig. 2. The reflected power (a), and transmitted power (b) as a function of 

incident angle for uniaxial chiral slab discussed in example 1. 
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