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Abstract: In this study, the computation and properties of the state transition matrix of inhomogeneous planar layered media are
investigated. Furthermore, non-reciprocity of inhomogeneous planar layered media is shown using the transition matrix method.
This theorem says that the plane wave transmission coefficients for a slab with inhomogeneity along the direction perpendicular to
the interfaces are the same when the wave incidences on the slab from left or from right, but that the reflection coefficients usually
differ. The validation of the results is studied finally through some typical examples.
1 Introduction

Features of electromagnetic wave propagation in
inhomogeneous media have been intensively studied during
the last decades. Inhomogeneous media are widely used in
microwave and antenna engineering as shields, filters,
absorbers and radomes [1–7]. In addition, inhomogeneous
media provide less scattering, larger bandwidth and better
coupling effects than homogeneous media.
Although analysis of scattering from stratified

inhomogeneous media is more complicated than that from
homogeneous media, several approaches have been
presented for the analysis of the scattering from
inhomogeneous media such as Richmond method [8],
Riccati equation [9], Taylor’s series expansion [10] and
Fourier series expansion [11]. The transition matrix method
is a commonly used to deal with the problems of plane
wave scattering from planar layered inhomogeneous media
[12–15]. The most important feature of this method is that
no matter how complex the medium is under study, the
transverse components of electric and magnetic fields with
some algebraic manipulating become four coupled
first-order differential equations.
This paper deals with the computation of state transition

matrix of inhomogeneous planar layered media using an
analytic method based on the Peano–Baker series. In
addition, we show non-reciprocity of one-dimensional (1D)
inhomogeneous planar layered media using the transition
matrix method. In the other word, it is shown that the plane
wave transmission coefficients for a slab with
inhomogeneity along the direction perpendicular to the
interfaces are the same when the wave incidences on the
slab from left or from right, but that the reflection
coefficients usually differ. Notice that, here, the medium is
reciprocal and non-reciprocity is used for the interaction of
electromagnetic waves with the inhomogeneous slab from
left and right.

2 Review on the transition matrix method

Consider an inhomogeneous slab characterised by a set of
constitutive relations

�D = 10 1(z) �E (1a)

�B = m0 m(z) �H (1b)

where ε(z) and µ(z) are relative permittivity and permeability,
respectively. As shown in Fig. 1, the planar structure is of
infinite extent along the y-direction so, derivatives of the
fields vanish with respect to y and z variables, that is,
∂/∂y = 0 and ∂/∂x = −jk0sinθ0. By eliminating z-components
of electric and magnetic fields from curl Maxwell’s
equations one can write

d

dz

�ET
�HT

[ ]
= G

�ET
�HT

[ ]
(2)

where �ET = (Ex, Ey) and �HT = (Hx, Hy) and are transverse
components of electric and magnetic fields, respectively,
and Γ-matrix is given by (see equation (3) on the bottom of
the next page)

where ω, c and h0 =
�������
m0/10

√
are the angular frequency,

speed of light and the intrinsic impedance of free space,
respectively.
Defining a 4 × 4 state transition matrix Φ with 2 × 2

sub-matrices Φ1, Φ2, Φ3 and Φ4 that relates the transverse
components of electric and magnetic fields at two
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Fig. 1 Inhomogeneous slab exposed to a linearly polarised plane
wave
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boundaries of the inhomogeneous slab, we can write

�ET(0)
�HT(0)

[ ]
= F

�ET(d)
�HT(d)

[ ]
= F1 F2

F3 F4

[ ]
�ET(d)
�HT(d)

[ ]
(4)

By introducing the reflection and transmission matrices of [T]
and [R] as

�E
r
T(0) = R�E

i
T(0) =

Rxx Rxy

Ryx Ryy

[ ]
�E
i
T(0) (5)

�E
t
T(d) = T �E

i
T(0) =

Txx Txy
Tyx Tyy

[ ]
�E
i
T(0) (6)

where superscripts i, r and t denote incident, reflected and
transmitted field, respectively, it can be shown that [12]

R = F1Z0 +F2 − Z0 F3Z0 +F4

( )[ ]
× F1Z0 +F2 + Z0 F3Z0 +F4

( )[ ]−1
(7)

T = 2Z0 F1Z0 +F2 + Z0 F3Z0 +F4

( )[ ]−1
(8)

where in

Z0 =
0 h0 cos u0

−h0/ cos u0 0

[ ]
(9)

is the wave impedance matrix.

3 Computation of the state transition matrix
of inhomogeneous planar layers

The computation of the state transition matrix of
inhomogeneous layers is more complicated than that
of homogeneous layers. Notice that if the slab is
homogeneous, similar to state-space analysis in linear
G = jv

c

0 0

0 0

0 h−1
0 1(z)− 1

1(z)
sin2 u0

(
−h−1

0 1(z) 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
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time-invarient systems, the state transition matrix Φ is exp
(−Γd ). For the computation of such a matrix, many methods
have been proposed such as expansion of Φ in a power
series, Cayley–Hamilton theorem and Leverrier’s algorithm
[16]. For inhomogeneous layers, Γ-matrix is dependent to z
and so the state transition matrix cannot be computed using
exp(−Γd ). In this section, two numerical and analytic
methods for the computation of the state transition matrix
of inhomogeneous layers based on the cascading thin
homogeneous layers and Peano-Baker series are proposed.

3.1 Cascading thin homogeneous layers

As shown in Fig. 2, an inhomogeneous slab can be considered
as laterally N homogenous stratified medium. The state
transition matrix of a homogeneous layer with constitutive
parameters ε0εn and µ0µn is computed using the Cayley–
Hamilton theorem [16]. As proved in the Appendix, the
state transition matrix of a homogeneous isotropic layer is
given by

F(layern) =

F
(n)
11 0 0 F

(n)
14

0 F
(n)
22 F

(n)
23 0

0 F
(n)
32 F

(n)
22 0

F
(n)
41 0 0 F

(n)
11

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (10)

has only six distinct and non-zero elements (F(n)
11 , F

(n)
14 ,

F(n)
22 , F

(n)
23 , F

(n)
32 and F(n)

41 ) that are

F(n)
11 = cosh

�����
g1g4

√

F(n)
14 = �������

g1/g4
√

sinh
�����
g1g4

√

F
(n)
22 = cosh

�����
g2g3

√

F(n)
23 = − �������

g2/g3
√

sinh
�����
g2g3

√

F
(n)
32 = − �������

g3/g2
√

sinh
�����
g2g3

√

F(n)
41 = �������

g4/g1
√

sinh
�����
g1g4

√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where g1 = jvm0d −mn + (1/1n) sin
2 u0

( )
, g2 = jωμ0μnd,

g3 = jv10d 1n − (1/mn) sin
2 u0

( )
and g4 = jωε0εnd. Clearly,

according to (4), the state transition matrix of inhomogeneous
slab can be written as

F = F(layer1)F(layer2), . . . , F(layerN ) (12)

Considering (10) and (12), it can be seen that the state
transition matrix of inhomogeneous slab has the following
form

F =
F11 0 0 F14

0 F22 F23 0
0 F32 F33 0

F41 0 0 F44

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (13)
0 h0 −m(z)+ 1

1(z)
sin2 u0

( )
h0m(z) 0)

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)
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Fig. 2 Plane wave incidence upon a stratified structure of N layers

Table 1 State transition matrix of an inhomogeneous layer
with linear inhomogeneity

ε(z) = 4 + 5(z/d ), d = 2 cm, f = 1 GHz, θ0 = 0°

Cascading thin homogeneous
layers

Peano-Bakers Series

N = 10 N > 80 M = 5 M > 10

Φ11 = 0.4169 Φ11 = 0.4163 Φ11 = 0.4186 Φ11 = 0.4163
Φ14 = j129.55 Φ14 = j129.55 Φ14 = j129.60 Φ14 = j129.55
Φ22 = 0.4169 Φ22 = 0.4163 Φ22 = 0.4186 Φ22 = 0.4163
Φ23 =−j129.55 Φ23 =−j129.55 Φ23 =−j129.60 Φ23 =−j129.55
Φ32 =−j0.0006 Φ32 =−j0.0060 Φ32 =−j0.0006 Φ32 =−j0.0060
Φ33 = 0.5459 Φ33 = 0.5465 Φ33 = 0.5482 Φ33 = 0.5465
Φ41 = j0.0060 Φ41 = j0.0060 Φ41 = j0.0060 Φ41 = j0.0060
Φ44 = 0.5459 Φ44 = 0.5465 Φ41 = j0.0060 Φ44 = 0.5465

Table 2 State transition matrix of an inhomogeneous layer
with exponential inhomogeneity

ε(z) = 2 exp(2z/d ), d = 10 cm, f = 1 GHz, θ0 = 45°

Cascading thin homogeneous
layers

Peano-Bakers series

N = 10 N > 150 M = 15 M > 20

Φ11 = 0.3136 Φ11 = 0.3265 Φ11 = 0.3199 Φ11 = 0.3265
Φ14 =−j146.93 Φ14 =−j147.14 Φ14 =−j147.11 Φ14 =−j147.14
Φ22 = 0.4038 Φ22 = 0.4201 Φ22 = 0.4125 Φ22 = 0.4201
Φ23 = j168.56 Φ23 = j168.84 Φ23 = j168.79 Φ23 = j168.84
Φ32 = j0.0060 Φ32 = j0.0060 Φ32 = j0.0060 Φ32 = j0.0060
Φ33 =−0.0177 Φ33 =−0.0238 Φ33 =−0.0263 Φ33 =−0.0238
Φ41 =−j0.0068 Φ41 =−j0.0068 Φ41 =−j0.0068 Φ41 =−j0.0068
Φ44 = 0.0163 Φ44 = 0.0112 Φ44 = 0.0084 Φ44 = 0.0112
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Notice that unlike the transition matrix of a homogeneous
layer, the diagonal elements of this matrix are generally
different and there are four distinct and non-zero elements.

3.2 Peano-Bakers series

It is convenient for some purposes to compute analytically the
state transition matrix in the transition matrix method. In
general there is no closed form solution for Φ-matrix.
Assuming Ψ-matrix as C = exp (

�z
0 G(z0)dz0), using the

Peano-Baker series we can write [17] (see (14))

where I is the 4 × 4 identity matrix. The Ψ-matrix is given by
the Peano-Baker series is unique and converges absolutely
and uniformly. For the simple computation of (14) using
programming language supporting matrix and symbolic
manipulations such as MATLAB, we can use a successive
procedure as the follows

C(0)=
∫z
0
G(z)dz

C(1)=C(0)+
∫z
0
C(0)G(z)dz

C(2)=C(1)+
∫z
0

C(1)−C(0)

( )
G(z)dz

..

.

C(M )=C(M−1)+
∫z
0

C(M−1)−C(M−2)

( )
G(z)dz for M ≥2

(15)

where C = I + C(M )

∣∣∣
z= d

and the state transition matrix

given by as F = C−1. Notice that truncating the above
series after a finite number of terms (M ) gives an
approximation for the state transition matrix. Clearly, for
homogeneous layers, that is, when Γ is a ‘constant’ matrix,
the state transition matrix is given as F = exp (−Gd).
In the end of this section, in order to compare the results of

these two methods, two inhomogeneous layers with linear
C = I +
∫z
0
G(z0)dz0+

∫z
0
G(z0)

∫z0
0
G(z1)dz1dz0
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and exponential inhomogeneity are considered. Notice that
using the Peano-Baker series, with fewer terms more
accurate answer can be found. Also, the studies show that
as the thickness of the inhomogeneous layer with respect to
the wavelength increases, the necessary number of
homogeneous sub-layers (N ) and number of terms (M )
increases (see Tables 1 and 2).
+
∫z
0
G(z)

∫z0
0
G(z1)

∫z1
0
G(z2)dz2dz1dz0 + · · · (14)
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4 Non-reciprocity of inhomogeneous planar
layers

The geometry of the problem is shown in Fig. 3. As shown in
this figure, both sides of the inhomogeneous slab having
thickness d are free space and a plane wave impinges
normally from free space onto it. As the first case (case I),
consider Fig. 3a wherein the slab is illuminated at z = 0. In
this case, the state transition matrix is given by

F(I) = F(layer1)F(layer2) · · ·F(layerN ) = F(I)
1 F(I)

2

F(I)
3 F(I)

4

[ ]

=

F11 0 0 F14

0 F22 F23 0

0 F32 F33 0

F41 0 0 F44

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

(16)

Therefore using (8) the transmission matrix is given by

T (I) = 2Z0 F
(I)
1 Z0 +F

(I)
2 + Z0 F

(I)
3 Z0 +F

(I)
4

( )[ ]−1
(17)

In the second case (case II), wherein the slab is illuminated at
z = d, the state transition matrix is given by

F(II) = F(layerN )F(layerN−1) · · ·F(layer1) = F(II)
1 F(II)

2

F(II)
3 F(II)

4

[ ]

=

F44 0 0 F14

0 F33 F23 0

0 F32 F22 0

F41 0 0 F11

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

(18)

and the transmission matrix is

T (II) = 2Z0 F
(II)
1 Z0 +F

(II)
2 + Z0 F

(II)
3 Z0 +F

(II)
4

( )[ ]−1
(19)
Fig. 3 An inhomogeneous slab exposed to a linearly polarised plane w

a Wave incidences on the slab from left
b Wave incidences on the slab from right
Relation between ε(I)(z) and ε(II)(z) is shown in this figure
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By considering (16) and (18), we can write

F(II)
1 = F(I)

4

F
(II)
2 = F

(I)
2

F
(II)
3 = F

(I)
3

F
(II)
4 = F

(I)
1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(20)

Considering (20) one can rewrite (16) as

T (II) = 2Z0 F
(I)
4 Z0 +F

(I)
2 + Z0 F

(I)
3 Z0 +F

(I)
1

( )[ ]−1
(21)

Now notice that because of F
(I)
4 Z0 = Z0F

(I)
4 and

Z0F
(I)
1 = F

(I)
1 Z0 we conclude that T (II) = T (I). Thus, the

transmission of electromagnetic waves through an
inhomogeneous layer is independent of the direction of
transmission.
Similarly, for the reflection matrices, we can write

R(I) = F(I)
1 Z0 +F(I)

2 − Z0 F(I)
3 Z0 +F(I)

4

( )[ ]

F
(I)
1 Z0 +F

(I)
2 + Z0 F

(I)
3 Z0 +F

(I)
4

( )[ ]−1
(22)

R(II) = F(I)
4 Z0 +F(I)

2 − Z0 F(I)
3 Z0 +F(I)

1

( )[ ]

F
(I)
4 Z0 +F

(I)
2 + Z0 F

(I)
3 Z0 +F

(I)
1

( )[ ]−1
(23)

Notice that because ofF(I)
4 Z0 = Z0F

(I)
4 and Z0F

(I)
1 = F

(I)
1 Z0,

terms inside the second brackets in (22) and (23) are the same;
but equality of F

(I)
1 and F

(I)
4 is necessary to establish the

equality of terms inside the first brackets in these equations.
Owing to the discussed properties of the state transition
matrix of homogeneous and inhomogeneous layers, equality
of F(I)

1 and F(I)
4 is possible in two special cases, so that the

layer is homogeneous, or inhomogeneous with symmetric
inhomogeneity around the centre of the layer.
To sum up, the transmission of electromagnetic waves

through an inhomogeneous layer is independent of the
direction of transmission and transmission coefficients for
such a slab are the same when the wave impinges on the
ave
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Fig. 4 Amplitudes and phases of reflection and transmission coefficients of inhomogeneous slab when the wave impinges normally on the slab

a From left
b From right
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slab at a given angle from left or from right, but that the
reflection coefficients usually differ under the same
circumstances. Although notice that if the slab is lossless,
because of the energy conservation principle, the
amplitudes of reflection coefficients are the same and have
different phases. Here, non-reciprocity is used for the
interaction of electromagnetic waves with the inhomogeneous
slab while the medium is reciprocal.
In the end of this section, an inhomogeneous layer is

considered to verify the non-reciprocity of one-dimensional
inhomogeneous layers. Consider a non-magnetic
inhomogeneous slab with a thickness of d = 0.2 m and
relative permittivity ε(z) = 4 + 5(z/d ) that varies linearly
from 4 to 9. The reflection and transmission coefficients of
inhomogeneous slab when the wave impinges normally on
the slab from left or from right are shown in Fig. 4.
Observe that as we expected the transmission coefficients
are identical, while the amplitudes of the reflection
coefficients are the same and have different phases. Owing
to the lossless dielectric layer, this is justified by the energy
conservation principle.
5 Conclusions

This paper deals with the computation and properties of the
state transition matrix of inhomogeneous planar layered
media. First, application of the transition matrix method to
analysis of the problems of plane wave scattering from
planar layered inhomogeneous media is reviewed. Then,
the computation of the state transition matrix using two
different methods as cascading thin sub-layers and
Peano-Baker series are investigated. Finally,
non-reciprocity of inhomogeneous planar layered media is
shown using the transition matrix method. It is shown
that the plane wave transmission coefficients for an
inhomogeneous layer are the same when the wave
incidences on the slab from left or from right, but that
the reflection coefficients usually differ. The validation of
the introduced methods and properties of the state
transition matrix of inhomogeneous layers was studied
using some typical examples. In future, the results of this
paper are expected to be used for the implementation of a
retrieval method for the electromagnetic characterisation of
inhomogeneous materials.
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7 Appendix

AssumingX =−Γd, g1 = jvm0d −mn + (1/1n) sin
2 u0

( )
, g2=

jωμ0μnd, g3 = jv10d 1n − (1/mn) sin
2 u0

( )
and g4= jωε0εnd.
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The eigenvalues of X-matrix are given by

l
1
= l

2
= �����

g1g4
√

, l
3
= l

4
= − �����

g2g3
√

(24)

Using the Cayley-Hamilton theorem [16], the exponential of X
can be written as

eX = a0I + a1X + a2X
2 + a3X

3 (25)

where a0, a1, a2 and a3 are unknown coefficients that are
determined by solving the following set of equations

el1 = a0 + a1l1 + a2l
2
1 + a3l

3
1

l1e
l1 = a1 + 2a2l1 + 3a3l

2
1

el3 = a0 + a1l3 + a2l
2
3 + a3l

3
3

l3e
l3 = a1 + 2a2l3 + 3a3l

2
3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(26)
F(layern) =

cosh
�����
g1g4

√
0

0 cosh
�����
g2g3

√

0 −
���
g3
g2

√
sinh

���
g2g

√
���
g4
g1

√
sinh

�����
g1g4

√
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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By solving these set of equations, we can write

a0 = 1− l21
2

( )
cosh (l1)

a1 = − l21 − 3

2l1
sinh (l1)

a2 =
1

2
cosh (l1)

a3 =
l21 − 1

2l31
sinh (l1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

Finally, by substituting these coefficients in (25) and after some
simple matrix manipulations, the state transition matrix of layer
can be written as (see (28))
0
���
g1
g2

√
sinh

�����
g1g4

√

−
���
g2
g3

√
sinh

�����
g2g3

√
0

��
3 cosh

�����
g2g3

√
0

0 cosh
�����
g1g4

√

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)
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