9.6 STRESS INTENSITY FACTORS FOR VARIOUS
CONFIGURATIONS

By considering the stress distribution in the vicinity of the tip of a crack in the middle of a large
plate subjected to a remote tensile stress, Relation 9.14 has been derived, namely,

K, =ona <K, (9.14)

Obviously, Relation 9.14 gives the stress intensity factor as a function of the applied stress ¢ and
the crack size 2a for the particular given plate geometry of Figure 9.4. A fracture criterion more
general than Relation 9.14 may be written as

K, =0+na CCF<K,, 9.15)

where “CCF” is a configuration correction factor depending on the loading and geometry of the
cracked body. For instance, for a centrally cracked finite plate loaded in tension as in Figure 9.6b,
CCF = fla/W) depends on the ratio of the crack half-length a to the width W. For a/W — 0, CCF
= fla/W) — 1 as may be seen from Equation 9.14 for an infinitely wide plate of Figure 9.6a.

For geometries and loadings other than Figure 9.6a, the CCF must be determined. Several
theoretical and experimental methods exist to do this.* One exact, but rather involved, method makes

* These include boundary collocation, conformal mapping, integral transforms, and finite element method. See Parker.?
Experimental techniques such as photoelasticity and interferometry are also used.
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use of stress functions of complex variables. This analytical method solves only relatively simple
geometries of cracked bodies. Other approximate methods are used for complicated geometries.
The results of such methods are presented either graphically or algebraically in the form of
polynomials. Below are polynomial expressions and graphical representations for some of the most
common configurations. In all cases utmost care must be taken in defining the stress appearing in
Equation 9.15 as the one associated with the graphical or algebraic information used to determine

the CCE
9.6.1 PLates UNDER TensILE LOADING
a. Crack of length 24, in the middle of an infinite plate, Figure 9.6a:
CCF = fla/W) = 1

b. Crack of length 2a in a plate of finite width W, Figure 9.6b'!:

1/2
CCF = f(a/W) = [% tan %} for a/W <0.25

or = ’secE for q/W<0.4
w

c. Double edge-cracks, each of length a, in a plate of finite width W, Figure 9.6¢!%

cr [ () 2 ()

na

or = [1.12 + 0.43(%) - 4.79(%)2 15.46(%)3] (for a/W > 0.7)

d. A single edge-crack of length a, in a plate of finite width W, Figure 9.6d'%

CCF = f(a/W)= [1.12 = 0.23(%) + 10.6(%)2 " 21.7(%)3 & 30.4(%)4]

for a/W<0.7

e. A circular internal crack of radius a (penny-shaped crack) embedded in an infinite solid,
Figure 9.6e3:

CCF=2/n

f. Semielliptical surface flaw of length a and width 2¢ in a plate, Figure 9.6f'314:

CCF = f(a/2c)=1.12/,Q
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FIGURE 9.6 Configurations of various stress intensity correction factors, CCF. (From Irwin, G. R., Trans.
Am. Soc. Mech. Eng., J. Appl. Mech., 651-654, 1962. With permission.)
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where Q = [¢? — 0.212 (0/Y)?], Y being the yield strength. The parameter ¢ may be
determined from Figure 9.6g or using the approximate expression*

3x w( a %
=—+—=|—
L 8 2(20)

9.6.2 Cracks EMANATING FROM CircULAR HoOLEs IN INEINITE PLATES

a. A single crack or a double crack at a circular hole of radius r; in the middle of an infinite
plate, Figure 9.7a and b, respectively'®:

12
CCF = (i + —;—) for a single crack a > 0.12r,
a

12
and CCF = (5— + 1) for a symmetric double crack a > 0.12r;
a

These are approximate CCFs, where a is the crack length measured from the edge of
the hole having a radius ;. The stress 0 in Expression 9.15 designates the remote tensile
stress perpendicular to the crack. Note that for very small cracks (a/r; = 0) in an exact
solution the CCF = fla/2r) — 3, i.e., three times that for a normal central crack as
expected from stress concentration around circular holes.

b. Two cracks each of length a at a circular hole of radius r; in a plate of finite width,
Figure 9.7c!’: Here CCF is determied from Figure 9.7c, noting that the total crack length
includes the hole diameter. ' V

c. A corner (nonthrough) crack at holes, Figure 9.7d.1416 An approximate solution considers
the hole as a part of an elliptical surface flaw of a ratioa’/2c=al(2 \/—ZE ). The maximum
stress intensity factor occurs at point A with CCF as:

/4
1.2 a2(2ri —b)2
CCF=—11+——=—

i (o} 16r°b

where ¢ is defined by Figure 9.6. Expression 9.15 is used in conjunction with a crack
length a.

d. A single radial crack a at a hole of radius r; under equibiaxial tensile loading, Figure
9.7¢": The configuration correction factor CCF = fla/W) depends on the ratio (a/r;) as
well as the applied loading. As noted before, the determination of the stress intensity
factor is affected only by the crack-opening stress.** However, for a crack emanating
from a hole, the stress concentration around the hole is known to be dependent on the
remote stress field: uniaxial or biaxial. Hence, as previously found in Section 6.4, for an
equibiaxial stress system (0, = 0, = o), the stress concentration factor at the edge of
hole is only 2 compared to a value of 3 for a uniaxial stress system. This fact is reflected

* The dependence of Q on the ratio of the stress opening the crack to the yield strength of material results from consideration
of plasticity at the crack tip. The above CCF has to be multiplied by a correction M,, accounting for the proximity of the
free surface in front of the crack, dependent on a/h. For shallow cracks, i.e., alh << and al2c — 0.5; M, = 1. However,
for a/h = 0.6 and a/2c = 0.1, M, could attain a value of 2. See Broek,' pp. 90-94.

** This is true for an absolutely elastic condition. If plasticity at the crack tip is considered, a transverse stress loading
affects the stress intensity factor; it is increased with a compressive stress and decreased with a tensile one.
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FIGURE 9.7 Graphs for various CCFs. (c, from Rooke, D. P. and Cartwright, D. J., Compendium of Stress
Intensity Factors, The Hillingdon Press, London, 1976. With permission.)
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in Figure 9.7¢ which indicates a smaller CCF factor for biaxial tensile loading as
compared to uniaxial loading.

9.6.3 PLATES UNDER BENDING

a. Pure bending for a cracked plate of depth W, Figure 9.8a'®:

4
0.923+0. 199(1 —sin 1‘3-)
2W

B ) R X

2W

b. Three-point bending for a cracked plate of L/W = 2, Figure 9.8b'*:

CCF = f(a/W) = [1 107-2. 12(%) + 7.71(%)2 - 13.6(—;—)3 + 14.2(%)4]

GOED R

' P/2!~ 3 ! e P/2

a) Pure bending b) Three—point bending

FIGURE 9.8 Cracked bars under bending: (a) pure bending, (b) three-point bending.
9.6.4 CircuLAr Rops AND TuBEs

a. Central circular crack in a cylindrical bar of radius r,, Figure 9.9a, b, and ¢,' subjected

to the following:
» Tensile load P causing a net average stress G = P/ 11:(ro2 - az), hence,

2/1-afr, ’ i
CCF = ____0[1 4 o.s[i] = 0.625[1] + 0.421[1J }
1 ro rg ro

 Pure bending moment M causing a stress g = 4MPa/n(ro" - a") , hence,

2
4. /1-afr
CCR=———* /", [1 + 0.5[3] + o.375[i]
rO rﬂ

3 4 5
+0.313(3] —0.727(3J +o.489{i”
ro ro ro
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FIGURE 9.9 Cracked circular rods and tubes subj

ected to different loading.

o Twisting moment M, causing a shear stress, T=2M, a/ n(r: —a“), hence, CCF is

to that for pure bending for cracks of (alr,) up to 0.6.

approximately equal
Figure 9.9d, e, and f,'? subjected to

b. External circumferential crack in a rod of radius r,,

the following:
« Tensile load P causing a net tensile stress G = P/mr?; hence,

CCF = —JZE—[I & o.s(i] + 0.375[2]

To T

3 4
—0.363[i] +0.731[i) }
rO ra

o Pure bending moment M causing a net stress G = 4M/mr}; hence,

2
3. _ .
CCF = ;/ o {1 4 0.5('—'] + 0.375(i)

rO r0
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o Twisting moment M, causing a net shear stress T = 2M/nr}: CCF is approximately
equal to that for pure bending.
Note that in the above three cases the stresses are defined with respect to the net cross
section, i.e., excluding the crack.
c. External circumferential crack in a long tube, Figure 9.10a, b, and c,'s subjected to the
following:
« Uniaxial tensile stress o applied remote from the crack, CCF is obtained from Figure
9.10a.
« Twisting moment M, applied, remote from the crack, about the tube axis: CCF is
obtained from Figure 9.10b.
d. External radial crack in a long tube subjected to a twisting moment M,: CCF is obtained
from Figure 9.10c.
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FIGURE9.10 CCFs for loaded long tubes: (a) circumferential crack under tension, (b) circumferential crack
under torsion, and (c) radial crack under torsion. (From Rooke, D. P. and Cartwright, D. J., Compendium of
Stress Intensity Factors, The Hillingdon Press, London, 1976. With permission.)

9.6.5 PressurizeD THICK-WALLED CYLINDERS

The stress intensity factors for long, thick-walled cylinder of outside and inside radii r, and r;,
respectively, with radial edge crack of length a, while being subjected to a uniform internal pressure
is given by
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K, = o\/na CCF = o/maf[a/(r, - 1,)] 9.16)

where f [a/(r, — r;)] is the CCF as obtained from Figure 9.11a'5 for an external radial edge crack
depending on the ratio r,/r;. Note that ¢ in Equation 9. 16 is taken as the highest tensile hoop stress
O, at the location of the crack, i.e., 6 = (Gp),,, as given by Equation 6.2 namely,

o=2pr} /(7 -r)

For a pressurized long, thick-walled cylinder with internal radial crack. The configuration factor
flal(r, - r))] is found from Figure 9.11b depending on the ratio r,/r;. In this case, the stress opening
the crack comprises that due to the internal pressure (Gp)r=r; according to Equations 6.2 together
with the pressure as

or

9.6.6 ROTATING SoLiD Disks AND DruMms

For a crack of length 2a located at the center of a rotating solid disk of radius r, as shown in Figure
9.12(a), the stress intensity factor K| is given by

K, =c+na CCF
where © is the crack-opening stress at the center, as given by Equation 6.23 namely,

o= 3'{-Tvazrf for a solid disk (plane stress)

o= (83(1_ 2:)) pw’r?  for a solid drum (plane strain)

The CCF is determined according to the Expression 20:

2 3
CCF = 0.997 +0. 1038(1} + 0.6525(1) & 0.7149[ﬁ) (9.17a)
[ & r r

o

o o

For a rotating drum with a radial external crack, as shown in Figure 9.12b, CCF may be
approximated (for v = 0.3)* by?":

2 3 4
CCF=1.134+ 3.465(£] & 2.363(i] - 3.394(1) + 3.848(£) (9.17b)
7, r, r,

To 0

* Based on the solution of Reference 21 (in adapted form).
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FIGURE 9.11 CCFs for pressurized thick-walled cylinder: (a) external radial crack and (b) internal radial
crack. (From Rooke, D. P. and Cartwright, D. J., Compendium of Stress Intensity Factors, The Hillingdon

(a) (b)

FIGURE 9.12 Cracked rotors: (a) disk with a central crack and (b) drum with a radial crack.



