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In order to lowering level of emissions of internal combustion engines (ICEs), they 

should be optimally controlled. However, ICEs operate under numerous operating 

conditions, which in turn makes it difficult to design controller for such nonlinear 

systems. In this article, a generalized unique controller for idle speed control under 

whole loading conditions is designed. In the current study, instead of tedious time-

consuming trial-and-error based methods, soft computing techniques are employed 

to tune a proportional-integral-derivative (PID) controller which controls idle 

speed of engine. Since model based design technique is employed, a mean value 

model (MVM) is taken advantage due to its evidenced merits. Moreover, a brief 

introduction to the selected meta-heuristics is given followed by a flowchart to 

show how the engine model is linked to the optimization algorithms. A set point 

of 750 rpm is fed to the system, and the weighted sum of the three characteristics 

of mean squared error, control energy, and percent overshoot of the control system 

is set to the problem objective function to be minimized. It is evidenced that of all 

the examined meta-heuristics, Bees Algorithm (BA) converges to a better solution. 

Finally, to consider the effectiveness of the developed optimal controllers in 

disturbance rejection, they are implemented to the engine MVM model. The results 

of the research indicate, all the four optimally designed control systems, albeit the 

intermediate superiority, are of conspicuous success in compensating for the input 

disturbances of the load torque. 
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1. Introduction  

Internal combustion engines (ICEs) play an 

important role nowadays in the field of automotive 

engineering. Notwithstanding the advantages that 

this ubiquitous part of industry and society can 

provide, the detrimental issue of air pollution can 

be considered as a token of their disadvantage. This 

is where engine control comes in to efficiently 

optimize the fuel consumption needs and hence 

minimize the level of emissions released. Without 

jeopardizing the automotive drivability, control 

engineers are able to gather both the goals of the 

efficient fuel consumption and a guaranteed level 

of emission together, using microelectronic control 

systems. An electronic throttle valve is composed 

of a DC motor, a motor pinion gear, an 

intermediate gear, a sector gear, a valve plate, a 

nonlinear spring, and a position sensor [1]. A mean 

value model (MVM) is a mathematical engine 

model which is intermediate between large cyclic 

simulation models and simplistic transfer function 

models. It predicts the mean values of major 

external engine variables such as crankshaft speed 

and manifold pressure dynamically in time [2]. 

Jazayeri et al. (2005) used the MVM technique to 

achieve the advantages of high calculation speed 
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and consisting a decent accuracy. In order to 

increase the accuracy of manifold pressure 

calculations, they proposed and compared two 

different relations. They have also presented a set 

of equations to describe rotational dynamics. The 

accuracy of the developed model has been 

validated through experimental works conducted 

on the engine of a Samand automobile [3]. To 

increase the capability of conventional MVMs in 

the prediction of engine raw emissions and 

performance in transient regimes, Nikzadfar and 

Shamekhi (2015) used an extended mean value 

model (EMVM) to study control-oriented 

modeling of ICEs based on block oriented 

modeling (BOM) concept. Validating the 

developed model with experimental data, they 

could achieve a satisfying concurrence between the 

two [4].  

Of all the existing controllers, PID controllers are 

evidenced to be of a great significance, which 

makes them be widely used in the industry due to 

their robust performance, albeit their simple 

structure. Unfortunately, since many real-world 

systems are mostly burdened with problems 

including a high order, time delays, and 

nonlinearities, it is quite a bit difficult to tune the 

appropriate gains of PID controllers [5]. Therefore, 

soft computing-based PID tuning techniques have 

intrigued researchers from an eclectic realm of 

science recently [6-9]. Abachizadeh et al. (2010) 

have employed Artificial Bee Colony (ABC) 

algorithm to tune PID controller parameters for 

plants of a high order as well as systems with time 

delay [9]. Lin et al. (2003) proposed a Genetic 

Algorithm (GA) based multi-objective PID 

controller for a linear brushless DC motor [10]. 

Bagis (2007) has used a modified version of GA to 

find the optimum PID parameters, and he 

compared the results with fuzzy and classic 

methods [11]. Bassi et al. (2011) used Particle 

Swarm Optimization (PSO) algorithm for optimal 

tuning of PID controllers, referred to as PSO-Based 

PID controller. As result of their research 

indicated, the recruited technique outperforms the 

traditional rival method of Ziegler-Nichols in 

improving the system’s transient response [12]. 

Hendricks and Sorenson have developed an engine 

MVM model to show how the engine model can be 

applied in order to systematically design and 

analyze the classical electronic engine control 

systems [13]. Fiaschetti,and Narasimhamurthi 

have proposed a descriptive bibliography about 

modeling and control of SI, 4-stroke engines; 

moreover, the discussion of the fundamentals in 

this work paves the way for uninitiated researchers 

in related areas [19]. Weeks and Moskwa have 

presented a Matlab/Simulink model which 

simulates a port-fuel-injected, spark-ignition 

engine. In addition, it includes the dynamics of 

fuel, air, and EGR in the intake manifold in a four-

stroke engine [27]. 

In accordance with the previous investigations, 

ICEs are evidenced to be high nonlinear systems. 

That is to say, a controller that is designed for one 

operating condition may not function properly for 

another, i.e. the stability of the closed-loop system 

may even be jeopardized. In order to extricate from 

this flaw, a generalized controller must be designed 

such that it performs appropriately at all the engine 

operating points. In other words, due to the high 

variety of conditions at which an engine operates, 

designing a PID controller with constant gains that 

can generally function at all the operating points 

may become vital. Aiming at doing so, in the 

current investigation, in order to control the engine 

idle speed, an ICE is modelled taking advantage of 

MVM concepts. In the controlled system, the 

manipulated parameter is the angle of throttle plate 

(𝜃). Since the engine model contains many 

nonlinearities, it is essential to use powerful meta-

heuristic algorithms to tune PID controller 

parameters.  

What follows in this article is organized as: 

In the next section, the modeling equations are 

governed; afterward, a brief introduction to PID 

controllers is given. Thereafter, meta-heuristic 

algorithms are introduced. Moreover, an overview 

for each of the existing algorithms is given. 

Besides, the optimization algorithms are 

implemented to tune PID controller parameters. 

Finally, after the simulations and computations, the 

results are compared and concluded. 



                                                                                                                                        MirMohammadSadeghi et al. 

2794 
International Journal of Automotive Engineering (IJAE) 

 

Figure 1 :Schematic of an SI engine cylinder 

 

2.  Mean Value Modeling and the 

Governing Equations 

An SI engine is a thermal machine, which 

converts the contained chemical energy in a 

mixture of air and fuel into mechanical energy. 

Conversion of chemical energy to mechanical 

energy involves some dynamic processes. Take the 

example of the reciprocating nature of piston 

synchronized with alternating valve dynamics, 

which causes a potential for flow of air from 

ambient into the cylinder. A schematic of the 

engine cylinder is illustrated in Figure 1; where 

Pa = 100000 [Pa]  and  Ta = 300 [K] are pressure 

and temperature of ambient air, respectively. The 

parameters of the following equations are obtained 

from the cited references such that they provide an 

optimal quality, e.g. minimum level of emissions, 

minimum fuel consumption, etc.  Therefore, some 

of the parameters are not deeply discussed, for the 

sake of conciseness, and are instead cited to 

references; hence, the readers are encouraged to 

check the corresponding references for further 

elaboration. 

The air is induced through throttle into inlet 

manifold after which goes through inlet valves to 

the cylinder. Since the inlet and exhaust air flow-

rate are different from each other, there is a 

dynamic process in the manifold, called manifold 

process, which is described by [22-24] 

𝑃�̇� =
𝑅𝑇𝑚

𝑉𝑚
(𝑚𝑡̇ − 𝑚𝑖̇ ) (1) 

 

   

Where 𝑃𝑚 is intake manifold pressure, 𝑇𝑚 is the 

inlet manifold gas temperature, which, here, it 

might be assumed to be equal to temperature of the 

ambient air. 𝑅 = 287 
J

kg. K⁄  is air constant and 

Vm = 1.55 Lit is inlet manifold volume. Also 𝑚𝑡̇  

and 𝑚𝑖̇  are airflow through the throttle valve and 

inducted air to cylinder respectively. The air flow 

rate through throttle is controlled mainly by throttle 

plate angle (𝜃) and is calculated as follows [24]. 

 

𝑚𝑡̇ =
𝑃𝑎

√𝑅𝑇𝑎

𝛽1(𝜃)𝛽2(𝑃𝑟) (2) 

   

Where 𝛽1 and 𝛽2 represent, respectively, the 

effects of the throttle plate angle and the pressure 

ratio (𝑃𝑟 =
𝑃𝑚

𝑃𝑎
) [24] 

 

𝛽1(𝜃) = 62.56 + 0.67 cos(𝜃)

− 62.8cos2(𝜃) 

(3) 𝛽2(𝑃𝑟)

= {
1

0.74
√𝑃𝑟

0.4404 − 𝑃𝑟
2.3086   𝑃𝑎 ≥ 0.4125

1                                               𝑃𝑎 < 0.4125

 

 

   Also, the induced air in the engine is calculated 

as follows: 

𝑚𝑖̇ =
𝑉𝑑

2𝑅𝑇𝑚
(0.921𝑃𝑚 − 8200)𝑛 (4) 

Where 𝑉𝑑 = 1.8 Lit  is displacement volume; 𝑛 

is engine rotational speed in [rpm]. 

The injectors are responsible for injection of fuel 

into the air stream to form an appropriate air and 

fuel mixture. Not all the quantity of injected fuel is 

mixed with air due to evaporation process. A main 

dynamic engine relates to a process of injection and 

evaporation. The manipulated parameter for 

injection is injection flow rate (𝑚ѱ̇ ) while the 

quantity of fuel which is conducted to cylinder 

is 𝑚𝑓̇ . Always part of injected fuel adheres on 

manifold walls called wall-film fuel, which has a 

mass of (𝑚𝑓(𝑡)̇ ). The following dynamic equations 

might be used to model the fuel dynamics [3, 14, 

22]. 
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𝑚𝑓̇ = (1 − 𝑘)𝑚�̇� +
𝑚𝑓(𝑡)

𝜏
 (5) 

  

 

Figure 2 :Fuel injection dynamic process 

                      

𝑑𝑚𝑓

𝑑𝑡
= 𝑘𝑚�̇� −

𝑚𝑓(𝑡)

𝜏
 (6) 

Where 𝜏 is a time constant and variable 𝑘 

describes how much of the injected fuel adheres on 

the wall which are, respectively, equal to 

0.34 (𝑠) and 0.3. The inducted air fuel mixture are 

ignited using a spark plug, causing the involved 

energy to increase the enthalpy of trapped air 

which in turn increase the pressure of air and move 

piston downward ending at generation of 

mechanical power on crankshaft end. The indicated 

torque of and engine might be calculated using 

following equation [26-28]. 

𝑇𝑖 = 531500 ∗
𝑚𝑖̇

𝑛
𝜂𝑓 ∗ 𝑆𝐼 ∗ 𝐴𝐹𝐼 (7) 

in which 𝜂𝑓 is the fuel conversion efficiency, SI is 

spark advanced effect and is equal to unity (SI=1), 

and 𝐴𝐹𝐼 is a function of 𝜆 as follows: 

𝐴𝐹𝐼 = 48.08𝜆5 − 235𝜆4 + 456𝜆3

− 441.5𝜆2 + 214𝜆
− 40.59 

(8) 

where 𝜆 is calculated as follows: 

𝜆 =
𝑚𝑖̇ 𝑚𝑓̇⁄

14.7
 (9) 

Not all the generated torque in thermodynamic 

cycle (indicted torque, 𝑇𝑖) might be delivered to 

crankshaft due to some frictions. The friction 

torque, which is mainly caused by mechanical 

friction of moving parts and some pumping losses, 

can be obtained as follows [29]. 

𝑇𝑓

0.14
= 50.26 + 0.0197𝑁 + 1.087

∗ 10−6𝑁2 +
17689

𝑁
+ 0.0193√𝑁 + 8.23

∗
𝑃𝑚

𝑃𝑎
 2.632

∗ 
𝑃𝑚

𝑃𝑎
9.3(1.33−0.00152𝑁)

+ 1.3 ∗  10−6 (
𝑃𝑚 ∗ 𝑁

𝑃𝑎
)

2

 

(10) 

where 𝑁 is engine rotational speed in “RPM”.  

Finally, the engine rotational speed is calculated as 

the third dynamic parameter based on Euler 

equation as follows: 

�̇� =
1

𝐽𝑒
(𝑇𝑖 − 𝑇𝑓 − 𝑇𝑙) (11) 

where 𝐽𝑒 is engine rotational inertia and ω is engine 

rotational speed in [rad/sec].  𝑇𝑙  is the load torque, 

which is exerted to engine due to transmission 

system [3]. In this study, variations of  𝑇𝑙 play role 

as input disturbance over engine rotational speed. 

The governed equations are modeled using 

Matlab/Simulink. Figure 3 illustrates the block 

diagram of the engine system. Why, one has to ask, 

is the throttle plate controller merely considered to 

be optimally tuned? Based upon the cited 

references, from which the governing equations are 

taken, the injection quality, the injection timing, 

and ignition timing, which highly dominate the 

degree to which emissions are released, are set 

fixed at an optimum point such that  they guarantee 

a minimum level of exhaust emissions. 

3. Overview Of PID Controllers 

A PID controller is used for improving the 

dynamic response as well as eliminating/reducing 

the steady-state error of a controlled system. 

Adding a finite zero to the open-loop plant transfer 

function, the derivative controller improves the 

transient response. The integral controller, 

however, adds a pole at the origin, which leads to 

an increase in system type by one and a reduction 

in the [5]: 

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑

𝑁

1 + 𝑁
1
𝑠

 (12) 

     

where 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 are, respectively, the 
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proportional, integral, and derivative gains. 

Moreover, 𝑁 = 100 is the filter coefficient. 

4. Introduction to Meta-heuristic 

Algorithms 

Meta-heuristic algorithms are population-based 

techniques that begin with a set of random 

solutions and gradually try to converge to a better 

feasible solution due to the associated mechanism 

defined for each of the algorithms. These 

algorithms are typically composed of five major 

parts. The first part is called problem definition 

where the objective function, number of decision 

variables, the range of the decision variables, etc. 

are defined. The second part is algorithm setting 

parameters which specifies the controlling 

parameters of the selected algorithm; such as the 

number of population, the maximum number of 

iterations, and so on.  The third part, the 

initialization, is dedicated to the problem 

initializing. That is to say, a set of random solutions 

are selected and then the fitness values of each is 

evaluated. The fourth part is algorithm main loop, 

which, as mentioned before, varies due to the type 

of the algorithm selected and the mechanism 

associated. The results are analyzed in the last part, 

i.e. post processing part. Meta-heuristic algorithms 

can be mainly divided into two categories: 

evolutionary algorithms (EAs) and swarm 

intelligence base algorithms.  

Place figures, tables, and photographs in the 

paper near where they are first discussed, rather 

than at the end, if possible. Color illustrations are 

discouraged, unless you have verified that they will 

be understandable when printed in black ink. 

Larger figures and tables that will need the whole 

width of the page should be located at the top or at 

the bottom of the page in order to stop interfering 

with the normal flow of the text as in the example 

Figure 2. 

5.  Overview of the Discussed Algorithms 

5.1 Genetic Algorithm 

Genetic algorithms (GAs) are among stochastic 

evolutionary-based algorithms inspired by Charles 

Darwin Theory of Survival of the Fittest and is 

proposed by Holland (1975) [30]. Care is needed 

not to restrict the application of GAs only to 

function optimizers, i.e. they are originally 

developed to study a much broader realm of 

problems consisting many non-optimization 

applications [14,15]. However, GAs are powerful 

optimization algorithms that reach an approximate 

global maximum/minimum of complex 

multivariable functions over a wide search space 

[33].  

The mechanism procedure can be explained as 

follows: 

At the first stage, initialization stage, GAs begin by 

selecting a number of random solutions 

(chromosomes) and the fitness values of each are 

then evaluated. At the second stage a selection 

strategy − tournament, roulette wheel, or random 

selection − is used and two number of parents are 

selected which are going to be crossed over and 

mutated. Thereafter, the produced offspring 

 

Figure 3: Block diagram of the engine system 
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population is added to the parents’ population.  At 

the third stage, the merged populations pass 

through sorting and, then, truncation stages. Owing 

to these last two stages that are applied to the total 

merged populations, there is no longer a need to be 

concerned whether the offspring offer a better 

solution than their parents or not. The result is a 

population of the same size as before offering a 

better solution compared to the last population. 

Finally, at the fourth stage, one can select the first 

individual as the best answer within each iteration. 

Stages 2, 3, and 4 are iteratively repeated until a 

termination criterion is met. In this paper, for the 

selection stage, the Roulette wheel selection 

process is implemented and the selection 

probability can be obtained using Boltzmann 

distribution equation: 

Table 1 GA setting parameters 

Symbol 
DEFINITION 

Value 

𝑴𝒂𝒙 
𝒊𝒕𝒆𝒓

 Maximum number of iterations 50 

𝑵 
𝒑
 Number of population 10 

𝑪 
𝑷

 Cross over percentage 0.8 

𝑴 
𝑷

 Mutation percentage 0.3 

𝝁 Rate of mutation 0.02 

𝜷𝒗 Selection pressure 8 

 

𝑝𝑖 =
𝑒

−𝛽
𝐹𝑖

⁄

∑ 𝑒
−𝛽

𝐹𝑗
⁄𝑁𝑝

𝑗=1

 (13) 

 

where 𝑝𝑖   is the selecting probability of the 𝑖𝑡ℎ for 

the mating pool;  𝐹𝑖  is fitness the 𝑖𝑡ℎ chromosome 

in the population of size 𝑁𝑝 [34]. 

In this study, GA is mainly used to find to three 

optimal controller parameters: 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 such 

that the controlled system obtain an acceptable step 

response output as well as a good steady-state 

error. The GA setting parameters are chosen as is 

shown in Table 1. 

5.2 Particle Swarm Optimization 

Particle swarm optimization (PSO) algorithm is 

among swarm-based EAs which has been 

extensively applied to solve many sophisticated 

engineering problems. The PSO algorithm is a bio-

inspired algorithm which mimics the natural 

behavior of schools of fishes, flocks of animals 

such as birds, insects, and so on [11]. This 

algorithm is proposed by [35]. The PSO algorithm 

stages can be explained as follow [36]: 

 Assign a random position in the search space 

to each particle, Initialization stage.  

 Evaluate the fitness of each of the particles.  

 For each of the particles, compare the 

particle’s current position fitness value with 

its 𝑝𝑏𝑒𝑠𝑡 . If the current value is better than 

𝑝𝑏𝑒𝑠𝑡 , substitute 𝑝𝑏𝑒𝑠𝑡 with the current 

position; afterward, for each of the particles, 

compare 𝑝𝑏𝑒𝑠𝑡 with 𝑔𝑏𝑒𝑠𝑡 . If the current 

𝑝𝑏𝑒𝑠𝑡  is better than 𝑔𝑏𝑒𝑠𝑡 , 

substitute 𝑔𝑏𝑒𝑠𝑡 with 𝑝𝑏𝑒𝑠𝑡 .  

 Update each particle’s position and velocity 

with respect to their 𝑝𝑏𝑒𝑠𝑡 and the 𝑔𝑏𝑒𝑠𝑡.  

 Repeat stages 3 and 4 until a termination 

criterion is met.  

where 𝑝𝑏𝑒𝑠𝑡 refers to personal best position 

(candidate solution), and 𝑔𝑏𝑒𝑠𝑡 refers to global best 

position (the problem solution ever found). 

In this method, the position and velocity of each 

particle at  𝑡𝑡ℎ  iteration will be updated by the Eqs. 

(14) and (15), respectively: 

𝑥𝑡+1
𝑖 = 𝑥𝑡

𝑖 + 𝑣𝑡+1
𝑖 (14) 

𝑣𝑡+1
𝑖 = 𝑤𝑖 × 𝑣𝑡

𝑖 

+ 𝑐1 × 𝑟𝑎𝑛𝑑1  × (𝑝𝑡
𝑖 − 𝑥𝑡

𝑖) 

+ 𝑐2 ×  𝑟𝑎𝑛𝑑2  × (𝑝𝑡
𝑔 − 𝑥𝑡

𝑖)   

(15) 

 

where the subscript 𝑔  refers to global best; 𝑟𝑎𝑛𝑑1 

and 𝑟𝑎𝑛𝑑2 are two random numbers within [0, 1]; 

𝑤 is the inertia weight [37]; 𝑐1 and 𝑐2 are two 

constants called, respectively, personal and global 

learning coefficients. Through a rigorous research, 

Clerc and Kennedy (2002) have obtained the best 

numerical values for  𝑤, 𝑐1, and 𝑐2 with the aid of 

constriction coefficients [38]. These factors are 

respectively proposed to be  w = 0.7298, c1 =
1.4962, c2 = 1.4962. The parameters of PSO 

algorithm are set as shown in Table 2. 
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Table 2 PSO setting parameters 

Symbol 
DEFINITION 

Value 

𝑴𝒂𝒙 
𝒊𝒕𝒆𝒓

 
Maximum number of 

iterations 
50 

𝑵 
𝒑
 Number of population 10 

𝒘 Inertia weight 0.7298 

𝒄 
𝟏
 Personal learning coefficient 1.4962 

𝒄 
𝟐
 Global learning coefficient 1.4962 

 

5.3 Invasive Weed Optimization  

Invasive weed optimization (IWO) algorithm is 

a technique inspired by colonizing weeds proposed 

by A.R. Mehrabian and C. Lucas. As the IWO 

algorithm is tried to exactly mimic weeds’ natural 

properties of optimality, robustness, and 

adaptation, it can be concluded that the IWO 

algorithm is a powerful though simple algorithm. 

The feasibility, efficiency, and effectiveness of 

IWO algorithm are well proved in details and the 

results are also compared to that of some other 

evolutionary-based algorithms. This algorithm is 

mainly composed of four major stages: population 

initialization, reproduction, spatial dispersal, and 

competitive exclusion. These four major stages are 

stated as follow [39]: 

 A finite number of seeds are dispreaded over 

the search area (population initialization).  

 Each one of the seeds grows into a 

flowering1 plant and depending on the 

fitness that they can provide, they 

themselves produce a number of seeds 

(reproduction).  

 The produced seeds are then randomly 

dispreaded near to the parent plant over the 

search area (spatial dispersal).  

 Stages 2 and 3 are iteratively continued until 

a maximum number of plants is reached. 

Thereafter, as the total number of plants is 

limited, ineluctably, those plants offering the 

best fitness can only survive and produce 

seeds (competitive exclusion). Finally, the 

process continues until a termination 

criterion is met. 

In reproduction stage, the number of seeds which 

each of the plants is allowed to produce depends on 

their own fitness compared to the colony's lowest 

and highest fitness: the number of seeds that each 

plant produces is directly proportional to its fitness. 

In other words, as the fitness of a plant increases, 

the number of seeds that this plant can produce 

increases linearly from minimum possible seed 

production to its maximum. Figure 4 illustrates the 

above-mentioned procedure. 

 

Figure 4: Seed production procedure 

The number of seeds produced regarding the 

plant's fitness can be obtained using linear 

interpolation formula: 

𝑆 =  ⌊𝑆𝑚𝑖𝑛 + (𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛)

∗  
𝑓 − 𝑓𝑤𝑜𝑟𝑠𝑡

𝑓𝑏𝑒𝑠𝑡 − 𝑓𝑤𝑜𝑟𝑠𝑡
⌋ 

(16) 

where 𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥  are respectively minimum and 

maximum number of seeds; 𝑓𝑤𝑜𝑟𝑠𝑡 , 𝑓𝑏𝑒𝑠𝑡,  are 

respectively the worst and the best fitness; finally, 

𝑆 and 𝑓 are respectively the number of seeds and 

the plant fitness. In spatial dispersal stage, the 

produced seeds are randomly distributed over the 

𝑖 dimensional search space by normally distributed 

random numbers with mean equal to zero and a 

variance of 𝜎2 (Eq. (18)). However, standard 

deviation (SD), 𝜎, of the random function is a 

reducing function from an initial value, 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , to 

a final value, 𝜎𝑓𝑖𝑛𝑎𝑙.  

 

Figure 5 :Seed distribution in a 2-dimensional 

search space 
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 𝑥𝑖
𝑠𝑒𝑒𝑑 = 𝑥𝑖

𝑝𝑎𝑟𝑒𝑛𝑡 + ∆𝑥𝑖 (17) 

∆𝑥𝑖~ 𝑁(0,  𝜎𝑖𝑡𝑒𝑟
2) (18) 

𝜎𝑖𝑡𝑒𝑟 = (
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)𝑛

∗ (𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜎𝑓𝑖𝑛𝑎𝑙)

+ 𝜎𝑓𝑖𝑛𝑎𝑙 

(19) 

where 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is maximum number of iterations, 

𝑖𝑡𝑒𝑟 is the current iteration, and 𝑛 is nonlinear 

modulation index which controls the rate at which 

𝜎𝑖𝑡𝑒𝑟 decreases. The IWO algorithm parameters are 

set as shown in Table 3. 

Table 3 IWO setting parameters 

Symbol 
DEFINITION 

Value 

𝑴𝒂𝒙 
𝒊𝒕𝒆𝒓

 
Maximum number of 

iteration 
50 

𝑵 
𝒊𝒏𝒊𝒕

 Initial number of weeds 5 

𝑵 
𝒎𝒂𝒙

 Maximum number of weeds 10 

𝒏 Nonlinear modulation index 2 

𝝈𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
Initial Value of Standard 

Deviation 
1 

𝝈𝒇𝒊𝒏𝒂𝒍 
Final Value of Standard 

Deviation 
0.001 

𝑺𝒎𝒊𝒏 Minimum number of seeds 0 

𝑺𝒎𝒂𝒙 Maximum number of seeds 5 

 

5.4 Bees Algorithm 

Bees algorithm is a rather simple though highly 

efficient optimization algorithm. In this method, 

every point of the search space is thought of as a 

food source. When a bee visits a food source, it 

evaluates its quality (fitness). Scout bees measure 

the fitness space randomly, exploring new areas of 

high fitness. That is to say, new solutions are 

randomly explored and evaluated. The visited sites 

are ranked, and forager bees are hired to exploit the 

neighborhood of the highest ranking sites.  As a 

result, new solutions near to the best sites are 

evaluated. The neighborhood of a candidate 

solution is called a “flower patch”. The Bees 

Algorithm explores the solution space, as an 

explorative action, and measures the neighborhood 

of the highest fitness candidate solution, as an 

exploitative action, looking for the global exterma 

[32]. The controlling parameters of BA are 

tabulated in Table 4. demonstrates a flowchart of 

how BA links to the PID controller tuning. 

Table 4 Bees algorithm setting parameters 

Symbol Definition Value 

𝑴𝒂𝒙 
𝒊𝒕𝒆𝒓

 
Maximum number of 

iteration 
50 

𝑵 
𝒔𝒄𝒐𝒖𝒕

 Number of scout bees 10 

𝑵 
𝒔𝒊𝒕𝒆𝒔

 Number of selected sites 5 

𝑵 
𝒆𝒍𝒊𝒕𝒆

 
Number of selected elite 

sites 
4 

𝑵 
𝒃𝒆𝒆

 
No. of Recruited Bees for 

non-elite Sites 
5 

𝑵 
𝒆𝒍_𝒃𝒆𝒆

 
No.  of Recruited Bees for 

Elite Sites 
10 

𝒓 Neighborhood radius 0.2 

𝒓 
𝒅𝒂𝒎𝒑

 
Neighborhood radius 

damp rate 
0.99 

 

6. Results and Discussion 

As can be seen from Figure 6, the system 

consists of a PI controller and a PID controller. On 

the one hand, the PI controller controls the air-fuel 

ratio, desired input, which is set to a constant unit 

step. The injection flow rate, 𝑚𝜓,̇  is then fed 

forward to the system as the input control signal. 

The PI controller parameters, i.e. 𝐾𝑝 and 𝐾𝑖, are 

initially adjusted to a pre-defined value of unity. 

On the other hand, the PID controller controls the 

engine idle rotational speed, i.e. the desired input, 

which is set to a constant value of 750 rpm. 

Needless to say, during the process of tuning the 

PID controller parameters, 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 , are not 

constant and vary as functions of the objective 

values. Obviously, the dynamic behavior from 

throttle plate angle to the engine rotational speed is 

more severe compared to that from the applied 

electric current to the plate angle of the electronic 

throttle. Therefore, simulation of the rapid dynamic 

of the electronic throttle is refused. 

The connection of the engine Simulink model to 

the optimization algorithms is briefly analyzed 

next.  According to the Figure 6, the simulation 

procedure is as follows. First, an optimization 

algorithm, BA as is indicated, is run. Afterward the 
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algorithm parameters are set, initialization section 

starts playing its role. In it, the model is run for 

each random PID gain sets. The mean squared error 

(MSE) resulted from the error between the set point 

and actual engine’s rotational speed in conjunction 

with the control energy of the control effort signal 

are calculated. Added together, these quantities 

will give the fitness value of the associated 

candidate solution. While adding to the MSE, we 

must multiply the control energy by a factor in 

order to balance the weight of the two objectives. 

The output of the model, the objective function in 

here, is the performance index; and its value, now 

termed as fitness value, is fed back to the 

algorithm. While initialization, the previously 

mentioned process is reiterated in number of 

population size, i.e. 𝑁p, and the corresponding 

fitness values are saved. Next, the algorithm main 

loop begins. Depending on the algorithm used and 

the associated population generation mechanism, 

each newly generated candidate solution is again 

inserted to the controller and the corresponding 

fitness value, as is shown in Fig. 7, is then sent back 

to the algorithm. Thereafter, the particle with the 

best fitness value is selected as the best particle 

within each iteration loop. The previously 

mentioned cycle is repeated until a termination 

criteria be met. Mean squared error (MSE) between 

two signals yields the area between the two. 

Therefore, the lower the MSE between two signals, 

the closer the two signals will be. Additionally, a 

lower value for over/undershoot offers a more 

rapid response and, hence, an improved transient 

response. The minimization of these two will 

obviously provide a decent response; yet, there is 

one other thing needs to be paid attention. The mere 

minimization of the two will result in a severe 

demand for the control energy. Thus, this is where 

the control energy plays role as the other objective 

to be minimized.   In sum, for the set point of 750 

rpm to the engine rotational speed,  the weighted 

sum of MSE between the set point and the system 

output, the percent overshoot (%OS), and the 

energy of the control effort is considered as the 

problem objective function, which is given as 

follows: 

𝐽 =
1

𝑛
∑ 𝑒𝑖

2

𝑛

𝑖=1

+ 𝑤

∗
1

2
∑ 𝑢𝑖

2 ∗ ∆𝑡𝑖 + %𝑂𝑆

𝑛

𝑖=1

 

(20) 

where 𝑛 is the error matrix size and 𝑒𝑖 is the error 

signal; 𝑤 = 10−5 is a weight-leveling factor which 

makes the optimization process be accomplished 

more indiscriminately towards the other objectives. 

For all of the algorithms, the lower and upper 

bound of the search space are set as [0, 100], [0, 

100], and [0, 10] for the three decision variables of 

𝐾𝑝, 𝐾𝑖, and 𝐾𝑑, respectively. In the current 

investigation, the algorithms are run with small 

population size in order to avoid computation 

obfuscation and to let the solution be converged at 

a faster rate. In addition, the simulations were 

conducted in a laptop computer with “Intel Core i5 

CPU” at 2.70 GHz and 6GB RAM. Equally 

important is the fact that all the optimization 

algorithms have been written in MATLAB script 

files, i.e. m-files. The simulation results are 

summarized and tabulated in Table 5. Accordingly, 

the MSE, Control Energy, and the Percent 

Overshoot associated with each of the controllers 

are tabulated. In the meanwhile, in order to select 

the best PID controller among all the tuned ones, 

the objective values have been normalized to the 

range [0, 1] with respect to the maximum value of 

each column, i.e. the last three columns in Table 5. 

Consequently, the sum of the normalized 

characteristics (objectives) was considered the 

fitness of the corresponding PID controller. As can 

be seen from the table, of all the tested controllers, 

BA-PID has the least MSE as well as the least 

Percent Overshoot, but it offers the largest Control 

Energy. In addition, as is shown in Figure 7, this 

algorithm outperforms its rivals and converges to 

an overall better solution, compared to the other 

tested algorithms. 
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Besides, the sum of the normalized objective 

values were sorted in an ascending order. Figure 

8 depicts a bar chart of the normalized values of 

the objectives related to the four designed 

controllers. According to Figure 8, the 

normalized values of the objectives are written 

on the corresponding bars. Moreover, the 

controllers’ order is organized as sum of the 

normalized objective values ascends. That is to 

say, in terms of fitness, the optimally tuned 

controllers can be sorted from best to worst as 

follows: BA-PID, GA-PID, PSO-PID, and IWO-

PID.

 

Figure 7: Convergence comparison of GA, PSO, 

IWO, and BA in minimizing the objective function 

 

Figure 6 : BA algorithm flowchart for optimal PID tuning 

Table 5 The obtained results 

 

Method 

 

𝑲𝒑 𝑲 𝒊
 

𝑲𝒅 
 

MSE 

 

Control 

Energy 

 

%OS 

BA-PID 5.913897653197346 80.9012556397419 .202609821644536 0.0453 338.9526 0.0054 

GA-PID 5.2697843444065 99.9306931841722 .180691349226107 0.0468 338.6169 0.0106 

PSO-

PID 
4.87904705435673 74.418306184609 .180198642964550 0.0606 338.6068 0.0099 

IWO-

PID 
4.3910541044604 98.6195822674810 0.16978349457987 0.0571 338.5817 0.0182 
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Figure 8: Bar chart of the designed controllers: 

sorted as sum of the characteristics’ normalized 

values ascends 

Now that the controllers are designed, they will 

be applied to   the engine MVM model so that 

their effectiveness in disturbance rejection be 

validated. Illustrated in Figure 9, is the 

implementation of the optimally tuned controllers 

while compensating for input disturbance of load 

torque, which increases by time. Also indicated is 

the control effort signal, i.e. throttle plate angle 

(𝜃). 

 

 

 It can be inferred from the figure that all the 

four optimal controllers, albeit the superiority 

within, are of conspicuous significance in 

compensating for the load torque disturbance. 

It might be important to note that these slight 

load disturbances are usually caused by a 

headwind blowing against the vehicle’s travel 

direction, switching on the vehicle air 

conditioning system abruptly, and other reasons 

causing an immediate functioning of the vehicle’s 

dynamo.  

7. CONCLUSION 

Internal combustion engines (ICEs) are among 

the most broadly used components of the 

automotive industry. However, a controller is 

necessary to maintain the engine at an optimum 

operating condition so that it yields a minimum 

level of emissions as well as efficient fuel 

consumption. In this paper, an internal 

combustion engine (ICE) was modelled taking 

advantage of Mean Value Modelling (MVM) 

concepts.  

 

 

 

 

Figure 9: Comparison of step response and transient response improvement of the controllers and their ability to 

reject input disturbances 
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Taking the throttle valve plate angle (𝜃) as the 

controlling parameter, the authors set a PID 

controller to control the engine idle speed at the 

reference value of 750 rpm. Thereafter, soft 

computing-based techniques were recruited to 

optimally tune the PID controller. Having set a 

reference signal of 750 rpm to the engine MVM 

model, the authors formed the cost function of the 

problem as the weighted sum of the MSE of the 

error signal, the percent overshoot of the closed 

loop system response, and the control energy of 

the control effort. By running the control system 

via the four tuned PID controllers, the authors 

have calculated the mentioned objectives 

associated with the response of each 

metaheuristic-control system. The sum of the 

normalized objectives was, then, considered as 

the fitness of the corresponding PID controller. 

As a result, the BA-PID controller was shown to 

be in superiority among the other three rival 

algorithms by converging to a better solution. At 

last, the achieved optimal controllers were 

implemented on the engine MVM model so that 

their effectiveness be validated in disturbance 

rejection. As it was evidenced, the recruited 

optimal metaheuristic-PID control technique 

exhibited a remarkable adequacy in 

compensation of the input disturbance of load 

torque. There are a large number of interesting 

works to be conducted for further expansion of 

the current study in the future. For instance, from 

the optimization perspective, using other 

metaheuristic algorithms, e.g. Ant Colony 

Optimization (ACO); Covariance Matrix 

Adaptation Evolutionary Strategy (CMAES); 

Teaching-Learning Based Optimization (TLBO); 

etc., and performing a statistical analysis, e.g. 

Markov Chain Monte Carlo (MCMC), in order to 

judge more fairly about the algorithms 

performance. On the other hand, from the 

modeling and simulation perspective, the rapid 

response of the other components of the engine, 

e.g. the rapid dynamics of the “inside elements” 

of an electronic throttle, may be taken into 

account to approach a more real-world 

simulation. 

List of symbols. 

ABC Artificial Bee Colony 

BA Bees Algorithm 

BOM Block Oriented Modeling 

EA Evolutionary Algorithm 

EMVM Extended Mean Value Modeling 

GA Genetic Algorithm 

ICE Internal Combustion Engine 

IKCO Iran Khodro Company 

IWO Invasive weed Optimization 

MSE Mean Squared Error 

MVM Mean Value Modeling 

OS Over Shoot 

PI Proportional-integral 

PID Proportional-integral-derivative 

PSO Particle Swarm Optimization 

RPM Revolution per Minute 

SD Standard Deviation 

SI Spark Ignition 
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