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& 1750
Orn = = o
CB=% 6 EI (50 — 200) = 5 6Bl
) & 1000
6 =——+— (200 — i
8BS 10 6EI( s TR
8 & 1000
Opc=——+— 100 +200 —+—
Qe 6EI( )™~ 10" emr
7o A 500
Opp=—+— + F———
e 6E1( 2004 10 =
2 AS A 500
6 i f ] = e
FD 5 " 6EI (100 200) =% = ohy
Third Stage
At point B the structure is still elastic. In order to maintain con tinuity at B
0pa =0BC )
Substituting for g o and Ogc gives
A A, 1000 1000 _3&
5 6EI 5

which is a relationship between the two unknown deflections.
Each hinge in turn must now be assumed to form last.
A forms last. 0 5 g = 0 fixed support at A, that is

1041.7 1875

§=——0

ET ET

A=

C forms last. O¢cp = 0¢cp to maintain continuity at C, that is

8 750 _. 5 1000

5T 6EI 10 GEI

L S
EI EI

Dforms last. 6pc = Opg to maintain continuity at D -

8+1000 A 500
10 6EI 5 6EI

substitute for & to give
A 500 1000_A 500

" 10 " 6EI  6EI 5 6EI

5556 . 13889
A=T"2 p=——=
EI EI
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‘hinges. The results of that analysis were obtained by a step-by-step stiffness
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E forms last, Ogp = 0 fixed support at E 6
416.7 1250 1
Am— skt
EI o H d
. i [
f.
Fourth Stage n
The largest displacements occur when the hinge at A forms last. Hence at the : Q
point of collapse : . : |
1041.7 : 6
s 5= 1875 ;
: El- . EI : E
‘This frame was used in chapter 3 toillustrate the gradual formation of plastic ?
i (

analysis using a computer. The results of that analysis (figure 3. 2) are identical to
the ones obtained here

6.2.4 Sloping Members

Structures with sloping members need careful attention. Figure 6.7 shows a
typical pitched portal frame. The problem is that, as with the pitched portal

(Mﬂol‘ h{ {—aﬂfgﬁh

§ ‘}fwd—f hm{i)ﬂ [Tﬁ&;

% r‘hf A(:"k; G—d{C]ng Dk._

A ; E { ‘D’fh/ Tz,u Eorr-l’ﬁ J‘JLE

it el P S
: Figure 6.7 : /

© Sed m &qemlﬂ

: : A = / L’Ue L % th
mechanism, the tops of the columns do not deflect the same amount. An GW : to

equation relating these deflections must be found. From the figure
A, = A, +8(tan o + tan ) . (6.3)

where 8 is the vertical deflection at C. Remember that in the slope deflection
equations the deflection normal to the sloping members (that is, § sec & and
& sec f) must be used.
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6.3 THE EFFECT OF DEFLECTION ON THE COLLAPSE LOAD :

The examples in the previous section showed that there can be significant
deflections before collapse starts. Deflections, particularly in columns with
substantial compressive axial forces, can cause serious instability (buckling) in
frames. In this section the effect of this on the collapse load is examined by
means of two examples. A practical method of allowing for instability is then
outlined. -

6.3.1 Horne s Example of a Cantilever Column

Horne [3] has given an excellent illustration of the effect that deflections can
have on the collapse load. His example is repeated here in a shghtly extended
form.

bending
~ moment M‘_____/

| A+e—-y |

e @ Lo
pes

Figure 6.8 0dm

A\

la)

Figure 6.8a shows a cantilever column, rigidly clamped at the base and free at

- the top. An eccentric vertical force is applied to the column, causing the column

to bend and deflect sideways. Column properties are
- lengthL=2m
eccentricity e = 0.1 m
Young’s modulus £ = 200 kN/mm?
yield stress oy = 250 N/mm?




T TN T TR e A o Y o e Tt = A BT e e e et o et i 2
S B s M s e, L A R A T R e e R T T, B T s

124 PLASTIC METHODS FOR STEEL AND CONCRETE STRUCTURES

Cross-section is scjuare, side length d = 0.1 m thus
d
I=—=8333x10"%m*
12 3
S :
=1.667 x 10™* nt?

ka3
S (plastic modulus) = (-3— =25x 1074 m3

¢

A (cross-sectional area) = d* = 0.01 m?

Consider first the elastic behaviour of the column. Figure 6.8b shows the free
body diagram from cutting the column at some point X. Moment equilibrium
_about X gives

M=—PA+e—y)
Using the moment curvature relationship of bending theory

d2
EI——=+M P(A+e—
i ( y)

which can be rearranged in the form
ﬂi—my =a?(A+e) ' | " - (6.4)
2 :
where a2 = P|EI. This differential equation governs the deflections () of the
- column. The solution of this equation has been shown [15] to be
y=(A+e)(1l —cos ax) ' (6.5)

Substltutmg x=Landy=A mto equation 6.5 gives the deflection A at the top
of the column ;

=e(secal — 1)
Replacing a ahd substituting the column properties gives : P
 A=0.1[sec (1.55x 10~3/P) —1] el (6,6) e 1O

The load deflection relationship (P — A) defined by equation 6.6 is shown in
figure 6.9. Although the analysis assumed elastic behaviour the curve is non-
linear because of increasing instability in the column. Apparently A becomes
infinitely large when

sec (1.55 x 107 3y/Pg) = o0
1,55 x 1073y/Pg =%
Pp=1.027x 108 N ek ()
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[}
{x 10°N)

1.0+ & elastic critical .E. : :

load: 1.027 x 10° N

08F elastic 4—-.@
V’
- s
; simple plastic collapse Bopaci
load: 0.59 x 10° N

0.4F

@ 4 actual collapse load: 0.326 x 10° N '
sz_c‘l e T3] ! :

¥ 0.2k P =ﬁ,282 x10° N

plastic curve @

( ‘ : ; hﬂm}
@ Figure 6.9

It can be shown that when the eccentricity, e, is zero, the strut would remain @" '
straight until this load, when it would buckle s;deways P, is called the bW
or elastic critical load of the column.
The stress in the column is a combination of axial and bending stresses. The ;
largest stress is at the base, where the BM is greatest. When this stress reaches the
yield stress the elastic analysis will cease to be correct. This will be when

r +P(A te)
A Z Iy
substituting for 4, Z, A, e and oy gives
100P + 600P sec (1.55 x 10™33/P) = 250 x 10%

This rather complicated equation can be solved by trial and error to show that
the load at first yield is

P, =0.262 x 10° N : | : @

It is possible, but complicated, to trace the spread of yield, but it is more
convenient to look now at the collapse of the column. Figure 6.10 shows the
collapse mechanism. The column becomes a lever rotating about a plastic hinge at
the base. The reduced plastic moment (allowing for the axial force) of the column
resists the rotation. From section 2.5

My i =T
M, Py
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A . :
PC

Figure 6.10 X Ci«;

for a rectangular section. Using

d’c
M. = =
p = Soy 4
and § Ak
P, = Aoy =d’ay (‘:‘Jﬁ \],\_(29) =\ ’
and putting P, = nP,, gives i ¥ P? B

3.
M, =(1 —n?) L

- The moment of the collapse load P, about the base causes the rotation.
disturbing moment = (A +€) P, = (A +e) nd* gy

At the point of collapse the disturbing and resisting moments are equal, because
- the column is in equilibrium. At collapse then :

3
(A +end?oy =(1 — nz)d_:x

~ which can be rearranged into

n? +%(A+e)n»l=0 @

The solution of this quadratic equation gives the collapse load P, as a
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proportion of Py, but the solution depends on the deflection A at the top of the
column. The collapse loads at various values of A have been plotted in figure 6.9. <— @
Figure 6.9 summarises the behaviour of the column from zero load until

DEFLECTIONS AND STABILITY

collapse. The broken line shows approximately the transition from elastic
behaviour as yield spreads through the base of the column. There are two pomts
to note,

(1) There is substantial deflection before collapse occurs.-

(2) A simple plastic collapse calculation would have used the mechanism
in figure 6.10 but with A = 0. That load (0.590 x 10° N) is considerably greater < @
than the true collapse load (about 0.325 x 10° N).

This is a rather extreme example, but it does illustrate the effects of deflection
before collapse. In any frame where there are compressive axial forces in the
columns, the true collapse load is smaller than the collapse load predicted by
simple plastic analysis. The reduction is usually less marked than shown here (as
can be seen in the next example) but cannot be ignored.

6.3.2 Portal Frame Example

A similar analysis for a portal frame is more complicated. The approach is
similar to that described in section 3.2 using a stiffness analysis and modifying
Lhe structure each time a plastic hinge forms. However, the stiffness matrices for
the columns must be formed using the stablhty functions [14] to allow for the
effect of axial load on stiffness. The analysis at each load factor now Tequires an

terative procedure to arrive at the solution, and is both complicated and expensive
in computer time.
1.5)\1

hp.——
Of-—

Y : ]
i B ;mhlﬁm
M, =100 i

b El constant e
: ¥ Dan Lo
W 'FVCLMA- :
5 10 I ) |

@ . - )
- Figure 6.11 _
The frame shown in figure 6.11a was analysed in this way and the results are

given in figure 6.12. The frame is identical to the one used in sections 32and
6.2.3. In the original analysis (section 3.2), the effects of axial load and deflection

were ignored, and the collapse load factor was 50.0. The frame collapsed by the
- combined mechanism with the hinges forming in the order E, C, D and A. The

three load deflection curves in figure 6.12 were obtained by using different £/
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v :
simple plastic
X collapse load factor
c 50 ry - -
; ~ 100 A '
s
40

20

. 1 L L i -
0 0.2 0.4 0.6 08 1.0 1.2 55

Figure 6.12

L

values for the members. These were chosen to give slenderness ratios, I/r, for the
columns of approximately 100, 200 and 500. The axial loads cause non-linear
behaviour between the formation of each plastic hinge, but more importantly,
they also reduce the collapse load factor. The bigger the deflections in the
structure the bigger the reduction. In each case the final mechanism is the
combined one, but in the very flexible frame (I/r = 500) the deflections modify
the order in which the hinges form. Table 6.2 shows the collapse load factors. The
biggest reduction is about 10 per cent although the corresponding //r ratio of 500
is much greater than would be used in a practical frame. The //r ratio of 200 is
about the practical limit, and in that case, the reduction is about 4 per cent.

Table 6.2

Slenderness

ratio (I/r) 100 e 0

Reduced collapse 49.10 48.25 4593
load factor

The reduction in collapse load factor is not really too much of a problem in
single-storey frames, but can be much more so in multi-storey frames. Multi-story
behaviour has been simulated by applying extra loads to the columns of the portal
frame as shown in figure 6.11b. The extra loads represent the weight of the
structure and the loading in the higher storeys. As can be seen in figure 6.13 the
results are more dramatic. The higher axial loads cause bigger deflections and
significant changes in behaviour. Table 6.3 summarises the collapse loads and
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A

A simple plastic
/ collapse load factor
- = 100 . & ]

" et
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30

20

il L 1 1 L 1 L 1 i

1.0 2.0 3.0 4.0 5.0 6.0 7.0 80 e
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Figure 6.13 |

mechanisms. (Actually the analysis results are open to question because the
deflections are no longer ‘small’, but the results do give at least a qualitative
picture of what can happen.)

Table 6.3
Slenderness Collapse load ~ Collapse
ratio factor mechanism
100 , 46.67 Plastic collapse,
combined mechanism
200 45.13 Plastic collapse
combined mechanism
500 36.60 Sway buckling

In the stiffer frames (I/r < 200) collapse still occurs by the combined
mechanism. In'the very flexible frame the structure reaches its maximum load
before a plastic collapse mechanism forms. In this case the structure becomes
unstable when the third hinge forms at A and the structure buckles, as can be
seen by the very rapidly increasing deflection.

Wood [16] has explained this type of behaviour. Just as the column in the
previous section had an elastic critical load, so too does the frame. (Horne and
Merchant [14] have presented a procedure for determining its magnitude.)
Usually this load is much greater than the plastic collapse load, as can be seen
in table 6.4. However, each time a plastic hinge forms, the stiffness of the frame
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l
7 .
Ifr  Collapse load A, modified A, original A, (simple AR
factor frame frame plastic analysis) equation
6.7,
100 49.10 400 2124 50.0. ! 489
200 48.25 200 1062 500 ' 47.8
500 4593 80 424 50.0 447
100*  46.67 200 531, 50.0 45.7
200%  45.13 100 265 50,0 5 5 421
500* 36.60 7.6 106 ¢ 500 34.0

* Frame loaded as in figure 6.11b

is reduced. The elastic critical load of the frame is now the load for a modified
frame with a frictionless hinge at the plastic hinge position. The frame and elastic¢
critical load must be modified successively as each hinge forms. Table 6.4 also
shows the elastic critical load of the modified frame when the third plastic hinge
has formed. In the case of the flexible frame (I/r = 500) that elastic critical load
is smaller than the applied load so that buckling must occur

6.3.3 The Rankine—Merchant Load Factor

The effects of axial force and deflection are rather disturbing. Except perhaps
for single-storey frames, it is not enough just to calculate the simple plastic
collapse load. It would also be a violation of the elegance and simplicity of the
plastic methods to resort to the non-linear computer analysis.

Very stiff structures collapse at the simple plastic collapse load, while very
flexible ones buckle at the elastic critical load. In general, these loads can be
found without too much difficulty. Merchant devised a means of approximating
the true collapse load factor, from the simple plastic collapse and elastic critical
loads, based on the Rankine amplification factor used in strut analysis. (The
simple plastic collapse load is obtained by the methods described in chapters 3
and 4, which ignore deflections and axial loads.) This approximation, called the
Rankine—Merchant load factor, Ay, is defined by the equation

1 1 1
e T Ligid
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where
A = simple plastic collapse load factor
A = elastic critical load factor

It is plotted in figure 6.14, with the failure loads of several frames tested by Low.
The Rankine—Merchant load factor gives in every case a safe approximation of
the observed collapse load factor. The Rankine—Merchant load factors for the
portal frames in the previous section are given in table 6.3. In every case the
Rankine—Merchant approximation is close to, but lower than, the theoretical

A e it

.-_ -“-' S et L e T T T O

collapse load factor. £
5 A\ A4
TR A & 3-storey frames |
i ® S-storey fram i
i >\ < 1.0 T =& L] g-s:o_r:vv fram:: |
1 \\ : ..‘. . o] ) Iﬁg
i op a {0 1no horizontal load I
| u
b
; 8
05 :I‘I
i
E 0 - AA ___>_\_____
! . ¥ E + '
! Figure 6.14 _ N e il
1 | 1l
i '
'; The apparent conservatism of Ag as shown in figure 6.14 is partly due to
strain hardening during the testing. Wood [17] has suggested the following i
modification to equation 6.7 to get a better approximation Hi
e =o' iwhen 223> 10 b
i : Ac i
i o 6.8) i
L e S
. RR )\C ke ;\c IE
This is shown by the broken line in figure 6.14. As can be seen, it agrees more ;
closely with the experimental results than the Rankine—Merchant value. When
- Ae/Ac <4, Wood suggests that the simple analysis is insufficient. It seems likely S
that Wood’s modified equation will be included in the new British code for L
steel design. i
|
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6.4 SUMMARY :

This chapter has been concerned with two things: the calculation of deflections
at the point of collapse, and the effect that those deflections (and the axial forces)
can have on the collapse of the structure. :

It was shown initially why it is important in some cases to know the magnitude
of deflections before collapse, because limiting those deflections might be more
critical than ensuring that the structure is sufficiently strong.

The slope deflection method of calculating these deflections was considered
next. The various stages of the procedure are :

(1) Determine the collapse mechanism, the corresponding load factor,
BMD and end moments (including fixed end moments) of each member of the
structure.

(2) Write down the slope deflection equations for each member

(3) Obtain relationships between the various unknown deflections by
considering continuity at every member connection which is shown by the
BMD to be elastic. Calculate the deflections, assuming that each plastic hinge in
turn is the last one to form.

(4) Choose the last hinge to form and the corresponding set of deflections
by using the displacement theorem.

The final part of the chapter was an examination of the non-linear behaviour
which results from the axial forces in the members. It was shown that the effect
is a reduction in the collapse load factor of the structure, the reduction depending
on the stiffness (as measured by slenderness ratio) of the structure: the lower the
stiffness, the greater the deflections and reduction in collapse load factor. In
single-storey frames the reduction is not usually significant for a structure with
practical values of slenderness ratio in the columns. In multi-storey frames the
reduction can be more serious, leading to premature buckling before plastic
collapse can occur. The Rankine—Merchant load factor was shown to give a good
estimate of the reduced collapse load factor, although it appears to be rather
conservative when compared to test results. Wood’s modification agrees more
closely with these results. i

6 5 PROBLEMS

6.1 A fixed end beam span L, carries a vertical load Wata dlstance L/3 from

the left hand support. Assuming a constant M, and EI for the beam determine

the vertical deflection at collapse under the load

6.2 A propped cantilever, span L, carries a UDL w per unit length Determine
the vertical deflection, at collapse, at the plastic hinge near the centre of the
span. Assume M, and EJ are constant.




