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Abstract 
This paper is concerned with the design of a hybrid state-feedback sliding-mode controller using fuzzy logic for a multivariable 

laboratory process of quadruple tank system. This apparatus is set to operate in its non-minimum phase mode which is more 
challenging to control as compared to the minimum phase mode. In the proposed control strategy, the consequent part of the fuzzy 
rules consists of either a sliding-mode controller (SMC) or a state-feedback controller (SFC). The proposed method takes advantages 
of the fast transient response of the SMC and the zero steady-state errors in SFC. Experimental results confirm the effectiveness of the 
proposed method as compared to the standalone SMC and SFC methods, especially when there are uncertainties in the model of the 
system. 
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1.  INTRODUCTION 

The well known multivariable laboratory process 
called quadruple tank system (QTS) consists of four 
interconnected water tanks, two pumps and two valves. 
This system has been widely used as bench mark problem 
in multivariable control to show its performance 
limitations, especially when it operates in non-minimum 
phase mode. I.e., the linearized dynamics of the process 
exhibits a multivariable zero on the right-hand side of the 
s-plane. This situation is achieved by adjusting the 
position of valves on the system [1]. This feature has 
attracted many researchers to control this process in both 
minimum and non-minimum phase modes. 

Shneiderman and Palmor have extended the QTS to 
include multivariable dead times, which may introduce 
infinite, finite or not any non-minimum phase zeros [2]. 
They have shown that the existence of the non-minimum 
phase zero depends on particular combination of 
multivariable dead times. 

Malar and Thyagarajan have proposed decentralized 
fuzzy pre-compensated PI controller for QTS in both 
minimum and non-minimum phase modes [3]. They have 
employed relative-gain array analysis [4] for decentralized 
control of this process and have shown that in non-
minimum phase mode the input-output pairing should be 
reversed and the controller yields smoother output without 
oscillation, which would increase the actuator life time. 

Biswas et al. have developed a sliding-mode controller 
(SMC) for QTS in non-minimum phase mode in which 
the controller was based on feedback linearization method 
[5]. Although the proposed method provides robust 
control of the process, the presence of discontinuous 
function in the controller creates chatterings, which is 
undesirable for system performances. To reduce this 

effect, they have considered the well-known boundary 
layer around the sliding surface that creates steady-state 
errors. Gareli et al. have proposed a collective SMC for 
QTS in minimum phase mode [6]. An inherent property of 
the multivariable systems is the interaction between their 
deferent inputs and outputs. In this Gareli have presented 
a partial decoupling method for MIMO systems and 
implemented it to the non-minimum phase QTS and have 
shown that the switching is carried out at very high 
frequencies [7]. Another approach, which prevents 
chattering in SMC, has been proposed by Alfi and 
Farrokhi [8] and Hosseini et al. [9]. In this method, a 
combination of SMC and SFC controllers using fuzzy 
logic has been implemented to a SISO system. 

In this paper, the objective is to combine the SMC and 
SFC by means of fuzzy logic for applying to the non-
minimum phase MIMO QTS when there are uncertainties 
in the model of the system.  

This paper is organized as follows: Section 2 discusses 
features of the nonlinear QTS. In Section 3, modelling and 
parameter estimation of QTS will be given. Sections 4 and 
5 describe the design of the SMC and the SFC, 
respectively. In Section 6, the combined controller will be 
designed and implemented to the QTS. Section 7 shows 
simulation results followed by conclusion in Section 8. 

 
2. PROCESS DESCRIPTION 

The quadruple tank system (QTS) consists of four 
interconnected water tanks with two pumps [1]. The 
schematic diagram of this system is shown in Fig. 1. One 
of the interesting characteristics of this system is placing 
one of its multivariable zeros on either half of the “s” 
plane by changing the position of two valves. The 
manipulated variables of QTS are voltages applied to the 
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pumps and its controlled variables are the water levels in 
two lower tanks (i.e., tanks 1 and 2). The output of each 
pump is divided into two tanks, one in the lower part and 
another in the upper part, diagonally opposite. In other 
words, the outflow of pump 1 splits between tank 1 and 
tank 4; similarly, the outflow of pump 2 splits between 
tank 2 and tank 3. The split ratio is determined by the 
position of the valves. The quadruple tank process has two 
transmission zeros. The position of one of these zeros 
depends on the split fraction 1γ  and 2γ  in valves 1 and 2, 
respectively. The minimum and non-minimum phase 
modes can be achieved as 

1 2

1 2

Minimum phase: 1 ( ) 2
Non-minimum phase: 0 ( ) 1

γ γ
γ γ

< + <
< + <

               (1) 

The non-minimum phase mode (i.e., when there exists 
right-half-plane zeros) of this system imposes serious 
limitations on the performance of the controller. 

 

3. MODELLING AND PARAMETER 
ESTIMATION 

The governing dynamical equations of QTS is [1] 
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where  ih , ia and ( 1, , 4)iA i = … are the water level, 
the cross section of the outlet hole and the cross section of 
the corresponding tank, respectively, 1γ  and 2γ  are the 
split coefficients of valves 1 and 2, respectively, 1v  and 

2v  are the voltage applied to the pumps, respectively,  

1k and 2k  are constants relating the control voltages with 
water flow from the pumps and g is the gravitational 
constant.  

For designing SFC, all parameter values of system are 
needed because this method depends on the model of the 
system. To this end, parameters 1 2 1 2, , , andk k γ γ  in (2) 
need to be estimated. For parameter estimation, data have 
been collected from the laboratory system by applying 
step inputs to the pumps. The parameter values are 
estimated using the Idnlgrey model in MATLAB 
software. This model is a Grey-Box and describes the 
system behaviour as a set of nonlinear differential 
equation with unknown parameters. Model validation is 

shown in Fig. 2.  As this figure shows, the black line 
describes the measured values and the blue line describes 
the Idnlgrey model. Estimated parameters are presented in 
Table 1, where 176.00 21 <≈+< γγ , which shows that 
the system is in its non-minimum phase mode. 

 Fig.1. Schematic diagram of QTS. 
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Fig.2. Model validation 

 
 

Table 1. Estimated parameters 

1γ 2γ 1k  2k 

0.42 0.34  27.43 19.55 
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 4. DESIGN OF SMC 
The standard normal form for a 2 2×  MIMO system is 

[5] 
.

1
1 2

. ..
1 1 1 1 1
2 1 1 1 1 2 2

.
2 2
1 2

. ..
2 2 2 2 2
2 1 1 1 1 2 2

( ) ( ) ( )
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          (3) 

where 1 1 2 2
1 2 1 2[ ]Tx x x x=x  is the state vector and 

1 2
1 1[ ]Tx x=y  is the output vector. 

Equation (2) is not in the form of (3) and hence, 
should be transformed to the standard normal MIMO 
form.  

In QTS, in non-minimum phase mode, the 
manipulated variables 1 2[ ]Tu u have little effects on the 
levels of the bottom two tanks since their dynamics are 
mainly controlled by the water flow from their respective 
upper tanks. Hence, the flow ratio from their direct pump 
can be ignored. Thus, for determining the relative degree 
of the system for designing the SMC, inputs  1u  and 2u  
must appear in the controlled variables 1h  and 2h  [10]. 

Therefore, by taking derivatives of 1h&  and 2h&  in (2), it 
gives 
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According to (4), the relative degree of the QTS in 
non-minimum phase mode is equal to two. Based on the 
sliding surface equation 

1( )nds e
dt

λ −= +                                (5) 

The sliding surfaces for this MIMO system can be 
written as

 1 1 1

2 2 2

s e e
s e e

λ
λ

= +
= +

&
&

                                  (6) 

where λ  is a positive constant and de x x= −  is the 
tracking error. Sufficient condition for reaching error 
trajectories on the sliding surfaces and staying on them is 
that the manipulated variables 1u  and 2u  are designed 
such that the following sliding condition is satisfied : 

( )2 2
1 2 1 1 2 2

1
2

d s s s s t
dt

η η+ ≤ − − ∀          (7) 

where 1η  and 2η  are small positive constants. 

By considering the uncertainties 1
1̂f  and 2

1̂f  for 1
1f  

and 2
1f  in (3), respectively, the upper bound of 

uncertainties can de defined as  

1 1
ˆ| |         1, 2i i

if f F i− ≤ = .                     (8) 

The uncertainties on the input vector can be 
considered as 
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It can be shown that the sliding control law can be 
derived as [10] 
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where 1 2[ ]Ts s sk k=k  satisfies the reaching condition (7) 
with the sign function defined as 

   1        if  0,
sgn( )    0       if   0,

 1      if   0.            

s
s s

s

>
= =
 − <

           (11) 

 
 

5. DESIGN OF SFC 
By linearizing (2) around the equilibrium point using 
Taylor series expansion, the state-space realization of 
QTS can be written as 

,= +x Ax Bu&                                 (12) 

where 
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in which 0
ih  ( 1, , 4i = … ) are the equilibrium points. 

The objective of implementing the state-feedback 
controller is to minimize the following performance 
index: 

0

( )T TJ dt
∞

= +∫ x Qx u Ru  

where Q and R are constant and positive-definite 
matrices. The optimal control law is 

1 T
SFC

−= −u R B Px                              (13) 

where P is a symmetric positive-definite matrix that 
satisfies the following algebraic Riccati equation: 

T 1 T 0−− − + − =PA A P PBR B P Q . 

Hence, the SFC for the QTS is 
T

SFC = −u K x                               (14) 
where the gain matrix K is equal to 

1 T−= −K R B P                              (15) 

 

6. HYBRID CONTROLLER DESIGN 
In this section, a combination of the SMC and the SFC 

with the aid of the fuzzy logic will be presented. It is well 
known that the SMC has a fast transient response and is 
robust against uncertainties in the system. However, when 
the system trajectories are near the sliding surfaces the 
chattering phenomenon occurs. By introducing a 
boundary layer around the operating point, as several 
researchers perform, the chattering can be avoided, but 
there will be steady-state errors. In order to eliminate the 
chattering and at the same time obtaining zero steady-state 
response, the SFC will be used when the system 
trajectories are in the neighbourhood of the sliding 
surfaces. The switching between these two controllers is 
performed using a fuzzy system. 

The fuzzy IF-THEN rules for the combined controller 
are defined as 

SMC

SFC

Rule1: IF | | is H, THEN
Rule2: IF | | is L, THEN

e u u
e u u

=
=             (16) 
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 Fig. 3.  Input membership functions 
 

where | |e  is the absolute value of the tracking error and 
H and L are fuzzy variables standing for high and low, 
respectively, with the membership functions shown in Fig. 
3. Since there are two manipulated variables in QTS, two 
fuzzy systems are needed, where | |e is defined as the 
corresponding fuzzy input variable. As discussed in 
Section 4, when the system is in the non-minimum phase 
mode, the water level of the lower tanks is mainly 
controlled by the outflow of their respective upper tanks. 
Thus, in the fuzzy system, 1| |e  is the input of the fuzzy 
controller for generating 2u  and 2| |e  is the input of the 
fuzzy system for generating 1u . When the states of the 
system are far from the operating point, the first rule in 
(16) is triggered and hence, the SMC is applied to the 
system. On the other hand, when the states of the system 
are near the sliding surface (i.e., near the operating points) 
the second rule is activated and the SFC is applied to the 
system. Finally, when the states of the system are neither 
far from the operating point and nor near them, a 
combination of the SMC and the SFC is applied to the 
system. By using the weighted-sum defuzzification 
method, the inputs to the pumps 1 2[ ]u u  can be obtained 
as 

SMC( ) SFC( )( ) ( )
( ) ( 1,2).

( ) ( )
H i i L i i

i
H i L i

e u e u
u t i

e e
µ µ

µ µ

+
= =

+
  (17) 

 
 
 

7. EXPERIMENTAL RESULTS 
The parameter values of the QTS in the non-minimum 

phase mode, are represented in Tables 1 and 2.   
The SMC is applied to the system with the switching 
parameters 521 == ss kk  and 1.0=λ . In addition, the gain 
matrix K in SFC has been determined as 

0.2422 0.1954 0.0522 0.1541
0.1932 0.1409 0.1675 0.0144

 
=  − 

K  
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It should be mentioned that the same parameters are 
used in experiments for the combined fuzzy SMC-SFC 
controller proposed in this paper. 

As depicted in Figs. 4 and 5, the combined controller 
has better performance as compared to the SMC and SFC. 
The SMC has undesirable overshoots and chattering in 
control signals, which can damage the pumps in a short 
time. Moreover, the SFC responses are not as fast as the 
SMC and have larger rise times. On the other hand, the 
proposed controller has better response as compared to 
both controllers. Table 3 summarizes the performance of 
different controllers. 

Next, by changing the cross section of the outlet hose 
of pump 1, the performance of the SFC and the hybrid 
controller are compared with each other. As Fig. 6 shows, 
the effect of this uncertainty on the SFC is much larger 
than the proposed controller during steady-state case. This 
is mainly due to the fact that the SFC is depends on the 
model of system. Fig. 7 shows that the hybrid controller 
continuously switches between the SFC and the SMC in 
order to overcome the large uncertainty. 

The block diagram of the proposed controller is shown 
in Fig. 9. 
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Fig. 4. Performance of three controllers. The desired value for 
both tanks is 12 cm, (a) Water level in tank 1 and (b) Water level in 

tank 2. 

Table 2. Parameter values of QTS 

Parameter  Value 

Cross section of tanks 
   ( 1,..., 4)iA i =  138.9 2(cm ) 

Cross section of outlet 
hose 

   ( 1,..., 4)ia i =  
0.50265 2(cm )  

G  981 2(cm/s )  

 
 

8. CONCLUSION 
In this paper, a combination of the state-feedback and 

the sliding mode controller using the fuzzy logic was 
presented for better performance of nonlinear and non-
minimum phase quadruple tank system. The proposed 
controller has the advantages of both SMC and SFC. In 
other words, fast transient response of the SMC and zero 
steady-state error of the SFC. It has been shown in 
experimental results that the proposed method offers fast 
response as well as insignificant steady-state errors. 
Moreover, the combined controller can cope with system 
uncertainties better than SFC. 
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Fig. 5. Input 1u and 2u  for different controllers. 
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Fig. 7. Contribution of SFC and SMC to the hybrid control law for 
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Fig. 9. Block diagram of the fuzzy SMC-SFC controller. 
 

 

Table 3.  Quantitative comparison of controllers for tank 1 

Controller  Overshoot Rise time 
(s) 

Settling time (s) 

SMC  44.16% 66 - 

SFC  10% 80 120 

Comb. 
Controller  13.33% 65 90 
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