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ABSTRACT

In this paper a new method for improving the training
of neural network is presented and its effect on neuro-
predictive control is shown. The improvement of training
is accomplished with ordering of training data set based
on a criterion function and using linear interpolation
between different training sets. The result is compared
with other neuro-predictive control methods. It is shown
that the proposed scheme can improve other neuro-
predictive control methods, especially when the dynamic
system is highly nonlinear.

KEY WORDS

Neuro-predictive control, receding horizon control,
neural networks, nonlinear systems.

L. INTRODUCTION

Using neural networks to model and control nonlinear
systems are attracting more and more attentions [1-4]. The
structure of neural networks is made of uniformly
distributed Computation units and synaptic connections
between them. In order to model a dynamic system, first a
proper structure is selected for the neural network, and
then the parameters of this network are computed in such
a way that can approximate the input-output behavior of
the system. This method provides considerable reduction
in mathematical complexity arising from physical
modeling laws of dynamic systems.

The predictive control has gained many industrial
applications. This is mainly due to its robustness against
model uncertainties, especially against system order, time
delays, and the effects of non-minimum phase [5]. The
predictive control an optimal approach based on receding
horizon theory. The optimal control vector, in this
method, is obtained by optimizing a performance index,
which minimizes the error between the future output of
the system and a reference path. But, according to
receding horizon theory, only the first element of this
vector is applied to process and the entire computations
are repeated in the next step. Therefore in order to predict

the future output of the system, we must use a model in
this control scheme.

Although the linear predictive control has found
numerous industrial applications, in contrast the nonlinear
predictive control has limited applications due to
nonlinear model [6]. Utilizing neural networks, due to
their ability of system modeling, results in reduction of
this problem and development of predictive control. The
neural network, in this method, is trained in such a way
that represents a proper approximation of the system
based on the input-output behavior. Then, based on this
model and utilizing the future outputs of the system, in
predictive-control performance index, the optimized
control is achieved.

In this paper, the neuro-predictive control is introduced
in section II. Then, in section III, the proposed training
scheme for neural network is presented, and the results
are compared with reference [1]. In section IV we show
the effect of this training on improvement of the neuro-
predictive control, and the conclusion is presented in
section V. The dynamic system and the utilized neural
model is shown in appendix.

II. NEURO-PREDICTIVE CONTROL

The neuro-predictive control takes advantage of a
neural network, based on the input-output behavior of the
dynamic system, to model the system. The most common
neural networks for system modeling are multi-layer
perceptron (MLP) and radial-basis function(RBF)
networks. The training time of the MLPs is relatively
more than that of RBF network. On the other hand, the
MLPs usually require less number of neurons. Because of
more neurons in RBF networks [7], the required
computational time is more compared to that of MLPs [1],
[8] and [9]. This is the main reason for using the later
network in most of the neuro-control methods.



The future outputs of the systems, in neuro-predictive
control, are obtained based on the present data of the
system and cascading the trained neural networks,
corresponding to the required number of predictive
horizon. Using these predicted outputs in performance
index, the optimal control vector is obtained so as the
error between these outputs and a desired path is
minimized. Now, according to the receding horizon
theory, only the first element of this vector is applied to
the system and the entire computations are repeated in the
next step. The most important advantage of this method is
the feasibility of obtaining an analytical control law. This
is due to the use of neural model and the abilities of this
model in reduction of mathematical complexities of the
physical systems.

III. IMPROVING THE TRAINING
METHODS OF THE NEURO-
PREDICTIVE CONTOL

The neural network is trained with a set of input-output
data, which are obtained by exciting the dynamic system
with rich inputs. In all neuro-predictive control methods,
there is no specific order for applying the data. We show
in this paper that with certain ordering of the training data,
one can achieve better training quality. In this method,
using a certain error criterion function, the sets of training
data are ordered in such a way that the distance between
the last data of a set and the first data of the next set is
minimized. The other improving method, which have
been used in this paper, is linear interpolation, and taking
advantage of extra data between difference training sets.

Figure 8 in appendix shows the dynamic system of
reference [1]. In this system r,0 ,and 175 are the outputs
(n3and 7m4represent the elastic deformation part of the
system) and f (applied force to the second arm) and
T (applied tourge to the first arm) are the inputs to this
dynamic system. Song et al. [1] have used a feedforward

neural network to model this system. They have used the
following equations to generate the input-output data:
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Where  a,al.b?,and  bjare uniformly distributed

random numbers.

Control inputs f(¢) and 7(¢) have been applied for 1

second with sampling period of 0.02 second in order to
create desired outputs. Hence, there are 50 vectors in the

form of [Gd,rd,n3,_f ,T]T, which form the first set of

data. Reference [1] has generated 19 more sets with

different and random value for af,a]: ,b;? and bf.

Therefore, 20 sets of data, each with 50 points, establish
the training data. The training performance of reference
[1] is shown in Fig. 1.

In this paper, first the twenty training data sets are
ordered so that the distance between the last point in a set
and the next point in the next set is minimized. For this,
we introduce the following error criterion function:
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in here, since it has been assumed that
n,(i) =n,(i) = 0 during generation of data. The

coefficients My, M, M, Mgare chosen somehow that four

parameters f,7,r,8 have the same value in criterion
function. Fig. 5 illustrates one of the training data sets.

Fig. 2 shows the training performance for the case
where the training data sets are ordered according to the
above proposition. It is clear that the result is better than
the result of reference [1] and the steady-state error has
been reduced by 33%. Next, by using extra data between
two consecutive data sets and performing interpolation,
we could still improve the training performance of neuro-
predictive controller. This process reduces the distance
when going from one data set to the next. The number of
extra points between two consecutive data sets can be
achieved with trial and error. For the simplest case, that is
using only one extra point between two data sets and
utilizing linear interpolation, the training performance is
shown in Fig. 3. The steady-state error is 78% less than
that of reference [1]. The training performance for the
case of three extra points and third order nonlinear
interpolation is also shown in Fig. 4. As this curve shows,
using more points may not necessarily improve the
training performance.

IV. THE EFFECT OF THE PROPOSED
SCHEME IN NEURO-PREDICTIVE
CONTROL

Although the neuro-predictive control is robust against
model uncertainty, but its performance deteriorates for
controlling highly nonlinear dynamic systems, specially
when encountering disturbances from environment. Fig. 6
illustrates the response of the predictive control,
for the system in Fig. 8, for the path
6, (t) =0.3708 —1.427¢,7,(1)=0.3656, n3,() =0, and
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[-02 03656 0 0], for the case of reference [1], as

well as the proposed method in this paper. In this
example, a disturbing tourqe with the value of 100 Nm
has been applied to the manipulator at time 1 sec.
According to this Fig., the predictive controller in
reference [1] is able to control the system very well. But,
after exertion of disturbing tourqe, it could not cancel out
the effect of the disturbance completely and the output 6
has converged from the desired wvalue of

0.2 rad to almost zero rad. On the other hand, the
employed method (representing the data in ordered
fashion), with extra points between data sets, can control
the system, before and after the 100 N.m disturbance,
better than reference [1]. Fig.7 shows the applied inputs f
and T . The profile of f and T of the proposed method is
smoother, specially after the disturbance, compared to
those of reference [1].

V. CONCLUSION

It has been shown in this paper that the order of
training data set in neuro-predictive control of nonlinear
dynamic systems can play important roll, specially when
the system encounters disturbances. Furthermore,
smoothing the consecutive training data sets can greatly
affect the error reduction for training of the neural
network. A linear interpolation for a manipulator with
flexible forearm yielded good results.

APPENDIX

Figure 8 shows the arrangement of the dynamic system
which have been used in reference [1] and in this paper.
The mathematical model of this system is as follows [1]:
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Fig 1. The training performance of neural network of reference [1]
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Fig 2. The training performance of neural network when training data
has been ordered.
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Fig 3. The training performance of neural network base on ordered data
and linear interpolation when only one interpolated data has been used in
every interpolation.

performance iz 00365842

Sum-5quared Error

0 20 40 60 80 100 120140 160 180 200
iteration

Fig 4. The training performance of ncural network basc on ordered data
and linear interpolation when three interpolated data have been used.
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Fig §. Manipulator with flexible arm. The first joint is rotary and the
second joint is prismatic.
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Fig 6. The comparison of the responses of the neuro-predictive controls.
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Fig 7. The inputs to the neuro-predictive control.



