
  

 
ABSTRACT 
 In general, 5 to 13 percent of electric energy is lost as 
heat in distribution systems. There are several methods 
for reduction of losses in distribution systems. One of 
these methods is the reduction of current in distribution 
network branches and compensation of the reactive power 
of loads with capacitors. Then, the optimum value of the 
reactive powers, and hence the optimum value of the 
voltages, is achieved with tap changing on the 
transformers. In this paper, assuming that the 
compensators are installed, the optimization on the 
voltage profile of distribution networks is gained with 
changing the tap of the transformers using LVQ and RBF 
neural networks. We will show that this method is 
capable of bringing the change of the voltages in the 14-
bus IEEE network to a range of [0.98, 1.02] with the 
minimum number of tap changing, hence decreasing the 
wear on mechanical parts. Also, since the proposed 
method is faster than the other methods (e.g. load flow 
and fuzzy logic), it would be easier to use it as an on-line 
scheme for distribution networks. 
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1. Introduction 
Voltage profile adjustments in distribution networks, in 
the presence of loads with changing reactive power 
consumption, is an important and sometimes critical 
issue. The reactive power of all loads is subject to change 
continuously. These changes result in voltage variations 
(or adjustments of the voltage profiles) at the supplying 
point. These variations, in turn, affect the performance of 
all appliances connected to the supplying point and may 
lead to interferences between different loads. One of the 
methods to prevent this problem is a proper allocation of 
compensators. The other method is changing the tap of 
the transformers [5], [6], and [9]. In this paper we employ 
artificial neural networks to optimize the voltage profile, 
and hence reducing the losses of distribution networks, 

using tap changer of the transformers. In the rest of this 
paper, first we introduce the utilized neural networks, and 
then, assuming that the compensators are installed, the 
changes on the tap of the transformers for optimization of 
the voltage profile of 14-bus IEEE network (Fig. 1), using 
Learning Vector Quantization (LVQ) and Radial Basis 
Function (RBF) neural networks, are considered.  At  the 
end, the  results of the proposed methods are compared 
with load flow and fuzzy logic methods. 
 
2. Learning Vector Quantization Network 
The LVQ method is in fact a supervised training scheme. 
In this method the Voronoi vectors are slowly shifted 
until the quality of decision making areas is improved. In 
this method, first, an input vector x is taken from the 
input space. If the sign of x and the sign of the Voronoi 
vector w are same, then the Voronoi vector w is shifted 
towards the input vector x, otherwise it is shifted away 
from it [3]. 

Let {wj | j = 1,…, n} be the set of Voronoi vectors and 
{xi | i = 1,…, l} the set of input vectors. Suppose that the 
number of input vectors is much bigger than the number 
of the Voronoi vectors. Assume the Voronoi vector cw is 
the closest to the input vector ix , and cwC defines the 
class of Voronoi vectors for wc and ixC determines the 

class of input vectors for ix . Then, the Voronoi vector 

cw is adjusted as follows: 

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] iccincc

iccincc

nnn

nnn

xw

xw

CCwxww

CCwxww

≠−α−=+

=−α+=+

if1

if1
  (1) 

3. Utilizing LVQ Neural Network in 
Voltage Profile Optimization Using Tap 
Changers 

The input voltages, in this paper are the initial value of 
the voltages. Fig. 2 shows the block diagram of the 
optimization of the voltage profile using the LVQ 
network. As this block diagram shows, the overall LVQ 
network is composed of two sub-networks. The shown 
parameters in Fig. 1 are as follows: 
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Fig. 1. The 14-bus IEEE distribution network 

 
 

Table 1. Line parameters of the IEEE 14 bus network 

beg. end R X B

1 1 2 0.01938 0.05917 0.0528
2 1 8 0.05403 0.22304 0.0492
3 2 3 0.04699 0.19797 0.0438
4 2 9 0.05811 0.17632 0.0374
5 2 8 0.05695 0.17388 0.0340
6 3 9 0.06701 0.17103 0.0128
7 9 8 0.01335 0.04211 0.00
8 4 10 0.09498 0.1989 0.00
9 4 12 0.12291 0.25581 0.00

10 4 13 0.06615 0.13027 0.00
11 7 5 0.00 0.17615 0.00
12 7 6 0.00 0.11001 0.00
13 6 11 0.03181 0.0845 0.00
14 6 14 0.12711 0.27038 0.00
15 10 11 0.08205 0.19207 0.00
16 12 11 0.22092 0.19988 0.00
17 13 14 0.17093 0.34802 0.00
18 9 7 0.00 0.20912 0.00
19 9 6 0.00 0.55618 0.00
20 8 4 0.00 0.25202 0.00

line no. bus no. line param. corresp. to p equiv. circuit (pu) 

 
Voltage 1: the voltage of the bus before the tap changer 
Voltage 2: the voltage of the bus after the tap changer 
C3 = 0: No need to change the voltages. 
C3 = 1: There is need to change the voltages. Hence, 

the tap changer must be adjusted accordingly 
(increase or decrease of the tap changer). 
Therefore, NET2 is enabled to control the tap 
changer.  

C1: To increase the tap changer 
C2: To decrease the tap changer 
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 Fig. 2. Block diagram of the proposed LVQ network 
 
 

 
Fig. 3. Radial basis function network 

 
 

NET1: Makes decision for change or no change of the 
tap changer. 

NET2: Makes decision for increase or decrease of the 
tap changer. 

The proposed network in Fig. 2 makes the minimum 
number of tap changing, which results in less wear on 
mechanical parts, and the most optimum voltages as 
compared to other methods. The flowchart algorithm for 
changing the tap of the transformers using the presented 
LVQ network in this paper is shown in Fig. 4. This 
algorithm has been performed on 14-bus IEEE network. 
To begin the algorithm, first the initial value of the buses 
must be entered. Then, the trained LVQ network makes a 
decision on whether to change taps or not, and brings the 
voltages to the range of [0.98 1.02]. The number of 
training epochs can be changed in order to give the 
proper amount of training to the network and hence 
reducing the range of the change of the voltages, 
assuming that the compensators are already installed in 
the proper locations in the distribution network. 

The results of the simulations of the proposed LVQ 
network is compared to that of load flow method [8] and 
fuzzy logic method [10] in table 2. Figs. 5 and 6 show the 
voltages of the IEEE 14-bus system after the first training 
epoch and at the end of the training phase of the LVQ, 
respectively. 



  

 

 
 

Fig. 4. Flow chart for tap changing using LVQ and RBF networks 

 
 



  

 
Fig. 5. Voltage profile of the 14-bus IEEE network after the first epoch 

of the training of the proposed LVQ network 
 

 
Fig. 6. Voltage profile of the 14-bus IEEE network at the end of the 

training of the LVQ network 

4. Radial Basis Function Network 
In the simplest form, an RBF network consists of three 
layers: 

1- The input layer, which consists of source (or input) 
nodes. 

2- The hidden layer, which has a different task than that 
of other neural networks and has enough number of 
neurons.  

3- The output layer, which contains linear neurons and 
defines the response of the network with regard to 
the applied inputs.  

Therefore, the mapping from the input layer to the 
hidden layer is nonlinear, whereas the mapping from the 
hidden layer to the output layer is linear. The structure of 
an RBF network is shown in Fig. 3. In this network, the 
radial basis functions are Green functions with the 
following form: 

( ) ( ) 




 −−=−=ϕ 2exp iii G txtxx ,   Mi ,,1 K=     (2) 

where M is the number of neurons in the hidden layer, 
which can be less or equal to the number of training 
samples. The output of this network is an approximation 
of the desired output and is obtained as follows: 
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The weights in the output layer wi and the center of the 
Green functions ti are adjusted during the training of the 
network, using the gradient descent method [5]. 

5. Utilizing RBF Neural Network in Voltage 
Profile Optimization Using Tap Changers 

This time, the algorithm in Fig. 4 is applied for RBF 
network. The results are shown in table 2. As this table 
shows, the RBF network can produce better results for 
optimization of the voltage profile of the distribution 
system than other methods.  

The RBF network finds local nonlinear approximations 
for the nonlinear input-output mappings. Therefore, the 
rate of learning of the RBF network is faster than that of 
the LVQ network. Also, the RBF network is less sensitive 
to the order of the inputs applied to it. But, the number of 
hidden neurons in the RBF network might become very 
large. This is mainly because the hidden neurons of the 
RBF network find the Euclidean distance between the 
input vectors and the center of their Green function, while 
this is not the case in LVQ network. 

6. Comparing the Neural Network Methods 
with Load Flow and Fuzzy Logic 
Schemes 

The voltage profile optimization of the IEEE 14-bus 
system in Fig. 1 for the load flow and fuzzy logic 
methods are shown in Figs. 7 and 8, respectively. Also 
the results of the LVQ and RBF networks, which are 
proposed in this paper, are shown in Fig. 9 and Fig. 10, 
respectively. These four methods can be compared as 
follows: 

1- The load flow method has complicated 
computations, while the training procedure in 
neural networks are relatively simpler and faster. 

2- The required computation time in the load flow 
and the fuzzy logic method is more than that of the 
neural networks. 

3- The load flow method does not yield good results 
for the IEEE 14-bus system. Although the results 
of the fuzzy logic method is satisfactory, but the 
required time for computations is more than that of 
the proposed neural networks. 

4- The range of change of the voltage profile from 
neural networks is between 0.98 and 1.02, while 
this range is much wider for load flow and fuzzy 
logic methods. 



  

 

 

Fig. 7. Voltage profile of the 14-bus IEEE network using load flow 
method 

 
 

 

Fig. 8. Voltage profile of the 14-bus IEEE network using fuzzy logic 
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Fig. 9. Voltage profile of the 14-bus IEEE network using the proposed 

LVQ network 
 

 

 
Fig. 10. Voltage profile of the 14-bus IEEE network using the proposed 

RBF network 
TABLE 2 

Comparison between neural networks and other methods 

1 0.987 1.060 1.104 0.9937 0.9940 10%
2 0.977 1.045 1.080 0.9985 0.9987 8%
3 0.969 1.010 1.060 0.9956 0.9963 7%
4 0.965 1.019 1.090 0.9890 0.9895 9%
5 0.984 1.020 1.100 1.0134 1.0001 8%
6 0.983 1.070 1.080 0.9995 1.0009 8%
7 0.965 1.062 1.080 1.0023 0.9982 7%
8 0.962 1.090 1.060 0.9976 0.9982 7%
9 0.963 1.056 1.060 0.9899 0.9990 8%

10 0.960 1.051 1.060 0.9901 0.9920 10%
11 0.987 1.057 1.080 0.9889 0.9999 7%
12 0.977 1.055 1.080 0.9875 0.9880 7%
13 0.971 1.050 1.070 0.9867 0.9882 9%
14 0.970 1.036 1.060 0.9866 0.9887 9%

LVQ 
network 

RBF 
network

Error 
reduction*

Bus 
numb

er

Bus 
initial 

voltage

Load 
flow 

method

Fuzzy 
logic 

*) In percent for the RBF network, relative to the LVQ network. 

7. Conclusion 
Based on the results shown in table I we can conclude 
that the proposed neural networks in this paper can 
give better results as compared to other existing 
methods. Moreover, the neural networks yield less 
number of tap changing, which results in less loss in 
power system and less wear on mechanical parts of the 
tap changers. Also the faster response of the neural 
networks makes them more appropriate for on-line 
applications. A comparison between the RBF and the 
LVQ network shows that the RBF network is the better 
network from the precision point of view. 
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