
  

 
1. INTRODUCTION 

One-dimensional inverted pendulum is a nonlinear 
problem, which has been considered by many 
researchers (Omatu and Yashioka, 1998; Magana 
and Holzapfel, 1998; Nelson and Kraft, 1994; 
Anderson, 1989), most of which have used 
linearization theory in their control schemes. In 
general, the control of this system by classical 
methods is a difficult task (Lin and Sheu, 1992). 
This is mainly because this is a nonlinear problem 
with two degrees of freedom (i.e. the angle of the 
inverted pendulum and the position of the cart), 
and only one control input. When this problem is 
extended into a two-dimensional inverted 
pendulum (e.g. an inverted pendulum, whose 
maneuver is not restricted in a plane, and can move 
in three-dimensional space, and also its cart does 
not move along one axis, but in x-y plane), then the 
system becomes a MIMO and very complicated 
nonlinear system. The control of this system, which 
is a more realistic model of the launched missile, is 
the subject of this paper. In order to solve this 
problem, if the multivariable classical control 
methods are used, then the model of the system 
must be linearized. But, because of the highly 

nonlinear behavior of the two-dimensional inverted 
pendulum in large deviation angles, these methods 
can control this system only for small deviation 
angles. On the other hand, the use of nonlinear 
classical methods for a MIMO system with 
differential equation of order 8 can be extremely 
difficult. In contrast, the decentralized control 
theory has opened a horizon for controlling of 
complicated and nonlinear systems (Ghanbarie, 
2000a). According to this theory, a complicated 
problem will be divided into a few simpler 
subsystems and each subsystem is controlled 
separately. Therefore, instead of solving one 
complicated problem, a few simpler sub problems 
are solved. The use of this method simplifies the 
control of a two-dimensional inverted pendulum. In 
the proposed method, in this paper, each subsystem 
is further decoupled into two-sub subsystems. 
Then, with defining two sliding surface, which are 
related to each other, the sliding-mode control will 
be applied to it (Ji-Change and Ya-Hui, 1998). In 
this way, the problem of controlling a system of 
order 8 can be accomplished with sliding-mode 
controllers for systems of order 2. To control each 
subsystem, dynamic-dependent portions and their 
parameters are modeled with two neuro-fuzzy 
networks. This makes the controllers independent 
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from the system model. Moreover, due to the 
nature of the neuro-fuzzy networks, it is possible to 
design an adaptive controller using on-line training 
mechanism for these networks. In the next section, 
the model of the tow-dimensional inverted 
pendulum will be given. In section III, the 
decentralized control theory and its application to 
the two-dimensional inverted pendulum will be 
briefly explained. The design of the controller will 
be brought in section IV, followed by neuro-fuzzy 
modeling in section V. Section VI shows the 
simulation results. The conclusion is given in 
section VII. 

 
2. THE MODEL OF TWO-DIMENSIONAL 

INVERTED PENDULUM 
 
The system of a two-dimensional inverted 
pendulum consists of an inverted pendulum 
connected to a cart, and can move in the three 
dimensional space. That is, it can deviate from 
vertical direction (i.e. parallel to the z axis) 
towards both x and y directions. The cart also can 
move in x-y plane (Fig.1). The dynamic of this 
system is as follows (Esmailie-Khatier, 1994):  
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where h is a 18× vector, influenced by the state 
vector of the system x and the input vector u, and 
G is a 88× matrix, which is a function of the state 
vector x. If the deviation angle of the inverted 
pendulum from the z-axis is assumed to be γ, then 
α and β are the projections of γ on the x-z and y-z 
planes, respectively, and α& and β& are the 
corresponding angular velocities. Also, x and y are 
the coordinates of the position of the cart in x-y 
plane, and x& and y&  are the velocities of the cart 
along x-axis and y-axis, respectively. xF and 

yF are the applied forces to the cart along x and y-
axis, respectively. After some matrix 
manipulations, the dynamic of the system can be 
rewritten as follows: 
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Fig. 1.  The schematic diagram of a two-
dimensional inverted pendulum 

 
where 

( ) ( ),, xx ijij bf and ( )( )2,1 and2,1 == jivij x are 

nonlinear functions of the state variables 
(Ghanbarie, 2000b). 

 
 

3. THE USE OF THE DECENTRALIZED 
CONTROL THEORY IN TWO-

DIMENSIONAL INVERTED PENDULUM 
 
What are mostly common in control theory are the 
centralized control methods: dada are received 
from the plant and all of them are sent to the 
controller. Then, the decision is made by the 
central control and the appropriate commands are 
sent to the plant. Here, the controller considers the 
plant as a whole. But in complicated systems the 
design of the controllers can encounter difficulties. 
One of the methods to control these kinds of 
systems is the decentralized control scheme. The 
main idea in this theory is the distribution of tasks. 
That is, the process under control is appropriately 
divided into several sub processes. Then, the 
controllers are designed locally and the processing 
is made in a decentralized fashion. In other words, 
the local controllers generate the control 
commands. Obviously, because of the interactions 
between subsystems on each other, the control 
commands, which are applied to the corresponding 
subsystems, affects other subsystems as well. 
Therefore, a third kind of disturbance, in addition 
to two well-known disturbances (i.e. the 
disturbances due to external signals and the 
disturbances due to the unmodelled dynamics), 
which is the effects of all subsystems on every 
subsystem, is defined (Ghanbarie, 2000a). If the 
dynamic equations of a two-dimensional inverted 
pendulum are linearized around 0=x , then its 
state equations become diagonal. In other words, in 
the process of linearization, the decoupling occurs 
along the x any y-axis. It should be mentioned that 
the linearized model of the two-dimensional 



  

inverted pendulum has not been used in this paper. 
The goal is only to conclude from the above 
comments that considering the x-axis as one 
subsystem and the y-axis as the other can be 
appropriate because the interactions between these 
two subsystems are relatively small. Moreover, 
because of the similarities between the x-axis and 
the y-axis dynamics, one needs only to design the 
controller for one axis. As a result, the MIMO 
system of order 8 is converted into two SIMO 
subsystems of order 4. Next, considering the 
disturbances of the third kind, one controller is 
designed for each subsystem. The closer the 
pendulum gets to the operating point ( 0=x ), the 
smaller the magnitude of the third kind of 
disturbance (i.e. at 0=x this disturbance is equal 
to zero and at the deviation angle equal to 90 
degrees it has its maximum value. Therefore, eqs. 
(2) become  

 21 xx =&                                                           (3) 
( ) ( ) ( )tdFbfx x 1111112 ++= xx&                      (4) 

43 xx =&                                                           (5) 
( ) ( ) ( )tdFbfx x 1212124 ++= xx&                      (6) 

65 xx =&                                                           (7) 
( ) ( ) ( )tdFbfx y 21211216 ++= xx&                   (8) 

87 xx =&                                                           (9) 
( ) ( ) ( )tdFbfx y 2222228 ++= xx&                 (10) 

In these equations ( ) ( )2,1and2,1 == jitd ij are 

the disturbances of the third kind. Later it will be 
shown how to convert each subsystem of order 4 
into two sub subsystems of order 2 using the 
decoupled sliding-mode method. The result is a 
simple design procedure and a controller with good 
performance. 
 
 

4. DESIGN OF THE CONTROLLER 
 
The goal of the control is to bring the inverted 
pendulum to the vertical position (in the z-axis 
direction) while the cart is brought to the origin of 
the coordinates. The state equations (3)-(6) are for 
the subsystem of the x-axis and the state equations 
(7)-(10) are for the subsystem of the y-axis. Hence, 
there are two subsystems of order 4, which are not 
in canonical form and must be controlled 
independently. 
 
 
4.1. The Decoupled Sliding-Mode Control Method 
 
Consider the following four state equations, similar 
to the subsystems of the two-dimensional inverted 
pendulum: 

21 xx =&                          (11) 

( ) ( ) ( )tdubfx 1112 ++= xx&            (12) 

43 xx =&                        (13) 
( ) ( ) ( )tdubfx 2224 ++= xx&          (14) 

where [ ]Txxxx 4321=x is the state vector, 
and ( )x1f , ( )x2f , ( )x1b , and ( )x2b  are nonlinear 
functions equal to ( )xijf  and ( )xijb  

( )2,1and2,1 == ji , respectively. Also, u is control 
input, and ( )td1  and ( )td2 are disturbances of the 
third kind. It is assumed that these disturbances 
have a higher limit: ( ) ( ) ( ) ( )tDtdtDtd 2211 , ≤≤ . 
 
Now, two sliding surfaces are defined as follows: 

43222111 , xxcsxxcs +=+=                  (15) 
According to the sliding-mode control theory, the 
control laws can be defined as follows (Slotine and 
Li, 1991): 
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Clearly, if 1uu =  in Eqs. (12) and (14), only states 

1x  and 2x  along with the hyper surface 1s  will 
converge to zero. On the other hand, if 2uu = , 
only states 3x  and 4x  along with the hyper surface 

2s  will converge to zero. In other words, the 
sliding-mode controller is able to control either the 
inverted pendulum or the cart, while the goal is the 
simultaneous control of both the inverted pendulum 
and the cart. One method might be as follows: 
converting the above fourth order system into a 
canonical form and then applying the sliding-mode 
control theory. But, this conversion has some 
conditions (Khalil, 1992). Moreover, its 
computations are complicated and laborious. Using 
the decoupled sliding-mode control scheme (Ji-
Change and Ya-Hui, 1998), one can employ the 
sliding-mode theory without converting the system 
into canonical form. The main idea of the 
decoupled sliding-mode controller is as follows: 
 
The existing fourth order system is divided into two 
subsystems A and B of order two. Subsystem A 
consists of the state variables 1x  and 2x , and the 
sliding surface 1s ; subsystem B consists of the state 
variables 3x  and 4x , and the sliding surface 2s . 
The main goal of the controller is to guide the state 
variables of subsystem A to the surface 01 =s  such 
that 1x  and 2x  approach exponentially to zero. 



  

The secondary goal is the same thing for the state 
variables of subsystem B and the corresponding 
sliding surface 02 =s . Since the main goal is to 
bring subsystem A into stable conditions, the 
information of subsystem B is considered as 
secondary data. These secondary data must be 
transferred via a mechanism to the primary data. 
For this reason, a dummy variable z is defined, 
which transfers the secondary data to the primary 
data. Therefore, the sliding surface 1s  changes into 

( ) 21111 xzxcs +−= . Now with this modified 1s , 
the main goal changes from 01 =x  and 02 =x  
into 01 == zx  and 02 =x , such that z is a 
function of 2s . Hence, the main goal and the 
secondary goal are linked together through the 
dummy variable z, and both of these goals will be 
controlled simultaneously. The dummy variable z 
can be found as follows: 
 
According to the above statements 

( ) 21111 xzxcs +−=                            (18) 
4and 2s  can be define as before 

4322 xxcs +=                               (19) 

The control input is the sliding-mode control of 
subsystem A (Eq. (16)). Since in sliding-mode 
control theory it is assumed that 1uu =  to control 
the entire system, the boundedness of 1x  can be 
assured with 10 << uz  and uzz ≤ . In other 
words, the maximum absolute value of 1x  is 
always bounded.  Here, uz  is the upper limit of z . 
Therefore, z can be defined as follows: 
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Therefore, z is a decaying signal, since uz  is less 
than one. The control action is accomplished as 
follows:  The main object of Eq. (16) is to make 1x  
and 2x  equal to zero according to the sliding-mode 
control theory. But when 02 ≠s , then 0≠z  in Eq. 
(18). This causes Eq. (16) to apply an input such 
that z is decreased. When z is decreased, 2s  will be 
decreased too. Moreover, when 02 →s , then 

03 →x  and 04 →x , which satisfies the 
secondary goal as well. In summary, with the 
introduction of dummy variable z in 1s , the system 
is decoupled into two sliding surfaces. Then, with 
appropriate changes in 1u , 1s  and 2s  will 
converge simultaneously to zero. The same 
procedure will be performed for the y-direction. 
The overall structure of the proposed control 
system is shown in Fig. 2. A few points are worth 
to be mentioned here: 
 

1. All nonlinear functions ( )xijf  and ( )xijb  

( )2,1 and2,1 == ji , are independent of 
state variables 3x  and 7x . 

2. All nonlinear functions ( )xijb  

( )2,1 and2,1 == ji , are independent of 
state variables 2x , 4x , 6x , and 8x . 

3. It can be shown that 11b  is less affected 
by 5x  than by 1x , and 11f  is less affected 
by 4x , 5x , 6x , and 8x  than by 1x  and 

2x . Similarly, it can be shown that 21b  is 
less affected by 1x  than by 5x , and 21f  
is less affected by 1x , 2x , 4x , and 5x  
than by 6x  and 8x . 

4. According to Eq. (16), 1k  must be 
selected such that ( )x111 / bDk > , where 

1D  is the upper limit of the third kind 
disturbance. 

 
 

5. NEURO-FUZZY MODELING 

According to Eq. (16), each local controller needs 
( )x1f  and ( )x1b  to control its own subsystem. In 

other words, the control system depends on ( )x1if  
and ( )x1ib  ( )2,1=i  during the control process. In 
addition, because of the dependency of the control 
system to the parameters of the dynamic of the 
system, the system makes errors when these 
parameters change. Moreover, because of the ideal 
dynamic model, the controller might encounter 
difficulties when it is used for a real system. Here, 
those sections of the controller, which are 
dependent on the dynamic of the system, are 
modeled with two ANFIS networks (Jyh-Shing and 
Jang, 1993). The advantages of this kind of 
modeling is as follows: 

• Because of a good approximation, the 
modeling accuracy is high. 

• Due to the simplicity of these networks, 
their training is very fast. 

• The trained network has a very fast on-line 
response. 

• The controller is able to control the system 
without any need to the dynamic equations 
of the system. 

• Because of the trainability nature of these 
networks, the controller can adapt itself to 
the changes in the dynamic of the system, 
by adding an on-line training mechanism. 
In this way, the controller becomes 
adaptive and robust. 

• Due to the existence of the physical 
interpretation for ( )xijf  



  

( )2,1 and2,1 == ji  and the fuzzy nature of 
the ANFIS network, one can use the expert 
knowledge in defining the fuzzy rules in 
the corresponding networks. 

Hence, two ANFIS networks are constructed to 
model ( )x1if  and ( )x1ib  ( )2,1=i  for each 
local  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2.  The control system structure 
 

controller. The inputs to the ANFIS networks for 
11f , 21f , 11b , and 21b  are { }21 , xx , { }65 , xx , 

{ }1x , and { }5x , respectively. The elimination of 
the less-effective state variables not only does not 
deteriorate the accuracy of the modeling, but also 
increases the accuracy of the modeling due to the 
smaller and simpler structure of ANFIS networks. 
 
 
5.1 Defining Fuzzy Rules 
 
In this paper the subtractive clustering method has 
been used to define fuzzy rules (Chiu, 1996). The 
subtractive clustering method is a scheme for 
extraction and classification of fuzzy rules. The 
advantages of this method, as compared to similar 
methods, are (Chiu, 1994): 1) there is no need to 
determine the number of clusters beforehand, 2) the 
complexity of the computations increases linearly 
with the dimension of the problem, which yields a 
higher computational speed, 3) the ability to 
consider each data, not each section, as the 
candidate for the center of the cluster, 4) extraction 
of fewer rules along with higher performance. 
Using this method for 656 input-output data points, 
which have been obtained for ( )x1if  and ( )x1ib  
( )2,1=i  based on their maximum excitation, 8 and 
3 cluster centers have been obtained, respectively. 
Therefore, ( )x1if  ( )2,1=i  is modeled with eight 

fuzzy rules and ( )x1ib  ( )2,1=i  with three fuzzy 
rules. 
 
5.2 The Structure of the ANFIS Networks 
 
Two ANFIS networks, one for ( )x1ib  with three 
first order rules and one for ( )x1if  with eight first 
order fuzzy rules, for each local controller, are 
constructed using singleton fuzzifier, center 
average defuzzifier, and product inference engine. 
The membership functions of the input variables 
are gaussian. 
 
 
5.3 Training of the ANFIS Networks 
 
The trainable parameters of the ANFIS networks 
are the primary and the tally parameters of the 
fuzzy rules. Primary parameters are the adjustable 
variables of the input membership functions (i.e. 
the center and the width of the gaussian 
membership functions) and the tally parameters are 
the coefficients of the linear equations of the tally 
part of the first order fuzzy rules. These adjustable 
parameters in the ANFIS network for 

( )x1if ( )2,1=i , for the primary and the tally parts 
of the fuzzy rules, are 24 and 34, respectively. 
Therefore, the total number of adjustable 
parameters for this network is 56. In the ANFIS 
network for ( )x1ib ( )2,1=i  the primary and the 
tally parts of the fuzzy rules have 6 and 6 
adjustable parameters, respectively; hence, a total 
of 12 adjustable parameters. The hybrid method, 
which is a combination of gradient descent and 
least square estimation, has been employed to train 
the networks (Jyh-Shing and Jang, 1993). 
Therefore, this method has the advantages of both 
gradient descent and least square estimation 
schemes. Reduction of the search space dimensions 
and hence a faster convergence speed, and less 
possibility of falling into local minima are two 
advantages of this method. The average errors of 
the ANFIS networks for ( )x1if  and ( )x1ib  after the 
completion of the training phase (45 and 40 
epochs) are 0.00856 and 5105637.8 −× , 
respectively. The reasons for such small errors are 
the proper structure of the ANFIS networks and the 
high performance of the hybrid training method. 
 
 

6. SIMULATION RESULTS 
 
In this section the simulation results of the 
proposed controller, which is performed on the 
model of a two-dimensional inverted pendulum, are 
presented. The initial values of the state variables 
are as follows: 
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Every local controller controls its corresponding 
sub system. While the inverted pendulum comes to 
the vertical position, the cart reaches the origin of 
the coordinates. Figs. 3 and 4 show the results.  
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Fig. 3. Simulation results of α  and β  
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Fig. 4. Simulation results of x  and y  

 
 
Despite the large initial values for angles 
( ( ) o850 =α and ( ) o780 =β ) the proposed controller 
is able to bring the pendulum to the vertical 
position. Also, the responses have acceptable 
overshoot and undershoot. It should be mentioned, 
however, that such large initial values for angles 
are not practical because the initial amount of 
forces would be also very large in order to bring the 
pendulum to   the   vertical   position.   These 
initial  
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Fig. 5. Inequality (16) for each local controller 
 
 
values for angles have been    only    considered   to  
show   the   performance limitations of the 
proposed  
method. According to the inequality in Eqs. (16),  
for the disturbances of the third kind 

)(10 11 xbD <  

where 1D  is the upper limit of 1d . Fig. 5 shows 

1d , 2d , )(111 xbk , and )(211 xbk . As it can be 
observed from these graphs, the above inequality is 
always valid. Therefore, it can be concluded that 



  

despite large initial deviation of the inverted 
pendulum from the vertical position, the 
disturbance of the third kind is situated in such a 
range that the local controllers are able to 
overcome that.  Moreover, Fig. 5 shows that the 
disturbance of the third kind decreases as the 
inverted pendulum reaches the vertical position and 
is equal to zero at the balanced position. As a 
comparison with other methods, the proposed 
method in (Asgarie-Raad, 1998) is able to control 
the same pendulum as in this paper only for much 
smaller initial values of the inverted pendulum 
with larger overshoots and undershoots. 

6.1 Applying External Disturbances 

The above simulations are repeated with external 
disturbances applied to both x  and y  directions. 
This disturbance, which is shown in Fig. 6, has 
relatively large amplitude and has been created 
using several sinusoidal waveforms with different 
frequency and amplitude along with random 
coefficients. The same initial values have been 
considered for α  and β as before. The simulation 
results are shown in Fig. 7. As it is clear from the 
graphs, the proposed controller can bring the 
inverted pendulum in the vertical position and hold 
it there, despite large amount of external 
disturbances and large initial value for angles. 
 

 
6.2 On-line Change of the Parameters of Inverted 

Pendulum 

As it was mentioned before, the two-dimensional 
inverted pendulum is the model of a balanced 
missile. Due to the consumption of the fuel, the 
mass of a launched missile decreases continuously. 
In addition, the gravity acceleration changes 
according to the following equation as the missile 
is distancing from the surface of the earth: 









=

d
d

gg s
0                                (20) 

where 0g  is equal to 9.81 m/s, sd is the radius of 
earth, and d  is the distance of the missile from the 
center of the earth. Moreover, some portions of the 
missiles, which are not needed anymore, are 
separated from it. This brings some sudden 
changes in the mass of the missile. These changes 
are simulated in the two-dimensional inverted 
pendulum as on-line. For this reason, it is assumed 
that the mass of the cart changes in two steps as 
follows: 









>
<≤
<≤

=
s5kg1.0
s50.8kg6.0

s0.80kg8.0

t
t
t

M                   (21) 

In fact, here the mass of the cart has been 
decreased by 25% and 78.5% in the first and the 
second steps, respectively. To simulate the change 
of the mass due the reduction of the mass of the 
fuel, the mass of the inverted pendulum has been 
changed according to the following equation: 

kg105.0 05.0 tm −×=                      (22) 

where t is time in s. And finally the gravity 
acceleration changes as follows: 

( )
2

2
m/s

0.021

9.8g
t+

=                    (23) 

where t is also time in s. The same initial values 
have  
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Fig. 6. Applied external disturbance to each axis 
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Fig. 7. Simulation results in the presence of noise 
 
 



  

been used for the inverted pendulum as before. Fig. 
8 shows the simulation results. As the graphs show, 
despite considerable changes in the parameters of 
the system, the proposed control method can bring 
the inverted pendulum to the vertical position. This 
can be an indication of the high degree of the 
robustness of the controller. The run time of the 
simulations is very fast, even in the MATLAB 
environment. A personal computer with Pentium II 
400 processor and 96 MB of RAM performed a 15 
second simulation in just 6 seconds. Hence, one can 
use the proposed method as an on-line controller, 
without any need to write the required codes in low 
level programming languages. 
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Fig. 8. Simulation results for the case of on-line 

changes of the parameters of the system 
 
 

7. CONCLUSION 
A new method, based on synthesis of the 
decentralized control theory and the decoupled 
sliding-mode method, was presented for controlling 
two-dimensional inverted pendulum. First, the 
dynamic equation of the system with order 8 was 
divided into two sub systems with order 4. Second, 
two sliding surfaces have been assigned to each sub 
system, and the sliding-mode control was 
performed using an intermediate variable. In this 
way, a nonlinear dynamic system was controlled in 
a simple fashion. Then, the dynamic-dependent 
portions of each controller were modeled with two 
ANFIS networks, with high degree accuracy. This 
made the controllers independent of the system 
parameters. Moreover, the inverted pendulum was 
controlled with on-line changes in the parameters 
of the system. In addition, due to the parallel 
processing nature of ANFIS networks, the 
simulations were performed much faster than the 
cases with no such networks. The simulation 
results show that the performed control method is 
robust against external noises too. Also, 
theoretically the controller is able to bring the 
inverted pendulum from large initial deviations to 

the vertical position. 
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