بررسی کیفیت حذف نویز در شرایط غیرعلی برای سیستم پیشخور کنترل فعال نویز با استفاده از منطق فازی

محمد فرخی (استادیار) **حامد مجللی** (دانشجوی دکترا) **على اكبر جلالى (استاديار)** farrokhi@iust.ac.ir hmojallali@erc.iust.ac.ir ajalali@iust.ac.ir

تهران- نارمک- دانشکده مهندسی برق- دانشگاه علم و صنعت ایران

چکیده– سیستمهای پیشخور کنترل فعال نویز که بصورت وفقی عمل میکنند، قادر به کنترل و حذف نویز میباشند. هنگامی که تاخیرهای الکــتریکی / آکوستیکی در زیر سیستم حذف نویز از تاخیر آکوستیکی مسیر اصلی تجاوز کند، شرط علیبودن نقض خواهـد شـد. در ایـن مقالـه، عملکـرد سیسـتم کنترل فعال نویز (ANC) پیشخور در duct (میدان أکوستیکی یک بعدی) تحت شرایط غیرعلی و به ازای تاخیرهای مختلف و متغیر بــا زمـان مـورد بررسی قرار گرفته است. بدین منظور از دو الگوریتم فازی و کلاسیک استفاده میگردد. نشان داده میشود که الگوریتـم فـازی دارای کیفیـت بـهتری در حذف نویز برای شرایط غیرعلی میباشد.

كلمات كليدي: كنترل فعال نويز، فيلتر وفقي، منطق فازي

١) مقدمه

کنترل فعال نویز(ANC)` آکوستیکی در سالهای اخیر توجه زیادی را به خود معطوف داشته است[4]-[1]. در سیستم ANC کــه بـرای Duct در شکل (۱) نشان داده شده است، نویز مرجع بوسیله میکروفونی نزدیک به منبع نویز حس میشود. فیلـتر وفقـی از ایـن سـیگنال مرجع $x(n)$ برای تولید سیگنال حذفکننده $y(n)$ استفاده میکند. سپس میکروفون خطا نویز باقیمانده $e(n)$ را انــدازه گرفتـه و از آن براي تطبيق بهتر ضرائب فيلتر وفقي استفاده ميكند. الگوريتم FXLMS' براي تنظيم ضرائب فيلتر وفقي پيشنهاد شده است[2].

شکل (۱): کنترل نویز آکوستیکی در یک Duct

Active noise control

Filtered-x least mean square

همانطوریکه در شکل (۱) نشان داده شده است، تأخیر آکوستیکی AD1 از میکروفون مرجع تا بلندگو متناسب با فاصلــه حسـگر تـا منبــع ثانویه است. تأخیر آکوستیکی دیگری بنام AD2 بین بلندگوی ثانویه و حسگر خطا، برای سیگنال حذفکننده و نویز منبع، مشترک اسـت. از طرفي تأخير الكتريكي ED به جمع تأخير فيلتر وفقي و تأخير كلي سيستم در فيلتر Anti Aliasing ، مبدل A/D، مبدل D/A، فيلــتر Reconstruction، بلندگو و زمان پردازش دلالت دارد. چون فیلـتر وفقـی لزومـاً پاسـخی علـی دارد، بایسـتی مطمئـن شـویم کـه تـاخیر أكوستيكي AD1 بزرگتر از تأخير الكتريكي ED است. اين شرط قيد عليت نــام دارد و ميiيمــم طــول يـك سيســتم را بـراي اينكـه نويـز تصادفی Broadband بطور مؤثری در یک Duct حذف شود را مشخص میکند. وقتی تأخیر الکتریکی ED بزرگتـر از تـأخیر آکوســتیکی AD1باشد، پاسخ کنترلکننده غیر علی است و بنابراین برای کنترل نویـز Broadband غـیر قـابل تحقـق میباشـد. در ایـن حـالت بـرای تضعیف نویز Broadband استفاده از طول بلندتر برای Duct است. اما محدودیتهای نصب سیستمهای تجاری(مانند لوله اگزوز اتومبیل پا سیستمهای تهویه هوا) معمولاً طول Duct را محدود میکند. از طرفی تقاضای زیادی وجود دارد که نویز را در یک Duct با طــول محـدود حذف شود. شکل(۲) بلوک دیاگرام یک سیستم پیشخور تک کاناله در شکل (۱) را نشان می دهد. مسیر اصلی $P(z)$ مسیر انتشــار بیــن سنسور مرجع و سنسور خطا را مدل میکند(شامل AD1 و AD2) در حالیکه $S(z)$ مسیر ثانویه بین خروجی فیلتر وفقی و سنسور خطا (شامل قسمتی از ED و AD2) است. تخمینی از مسیر ثانویه با $\hat{S}(z)$ نمایش داده می شود[2].

شكل(٢): دياگرام بلوكي سيستم كنترل فعال حذف نويز با استفاده از الگوريتم FXLMS

برای درک روشنتری از مقوله علیت توابع تبدیل $P(z)$ و $S(z)$ بترتیب بصورت تأخیر های خــالص $z^{-\Delta p}$ و $z^{-\Delta p}$ در نظـر گرفتـه ، میشوند. وقتیکه $\Delta s \geq 0-\beta = \lambda$ باشد، قید علی بودن ارضا میشود. تبدیل z سیگنال خطا $E(z)$ بصورت زیر بیان می $E(z) = X(z)[z^{-\delta} - W(z)]$ که در این حالت سیستم ANC بمانند یک شناساییکننده سیستم عمل میکند. وقتیکه $\Delta s < \Delta p - \Delta s = \delta$ قیــد علـی بـودن نقـض میشود و داریم:

$$
E(z) = X(z)z^{-\Delta p}[1 - z^{-\delta}W(z)]
$$

مشاهده میشود که در این حالت سیستم ANC بصورت یک پیش بینیکننده عمل میکند. برای یک پهنای باند مفــروض (x(n ، تــأخیر بزرگتر باعث میشود که فیلتر وفقی نتواند با کیفیت بهتری نویز را پیشبینی کند[6]. این مقاله از بخشهای زیر تشکیل شده است:

در بخش دوم ابتدا چگونگی استفاده از منطق فازی را برای حذف نویز در سیستم ANC بررسی می کنیم. سپس در بخش سوم مقایســهای بین دو روش حذف نویز به طریقه فازی و کلاسیک در شرایط غیرعلی صورت میگیرد و نتایج حاصل از آن ارائه میگردد.

٢) كنترل فعال نويزبطريقه فازي:

کنترل کنندههای کلاسیک بر اساس توصیف ریاضی از مدل خطی شده طراحی میشوند. بنابراین بکارگیری کنترل کنندههای بر اساس مدل در سیستمهای واقعی مشکل است، خصوصاً وقتیکه سیستم تحت مطالعه یک سیستم پیچیده و غـیرخطی باشـد. بعـلاوه روشـهای کنـترل کلاسیک فقط می توانند داده عددی را پردازش کنند در صورتیکه داده عددی بخاطر استفاده از روشهای کوانتیزاسیون؛ خطای گردکـردن و محدودیتهای سخت افزار در طراحی کنترل کننده کم و بیش نادرست است. در این بخش الگوریتم FFX ' ارائه می گ ردد که نــه تنــها داده عددی بلکه همچنین اطلاعات زبانی ناشی از تجربیات را برای تطبیق سیستم کنترل جهت حصول عملکـرد موردنظـر مـورد اسـتفاده قـرار میدهد. بعلاوه نیازی به در نظر گرفتن مدلهای ریاضی پیچیده و غیرخطی نیست. این الگوریتم فازی پـایداری را تضمیــن میکنــد و دارای سرعت همگرایی بیشتری نسبت به حالت کلاسیک میباشد[7]. همانطوریکه در شکل (۳) نشان داده شده است الگوریتم FFX برای یـک سیستم ANC در نظر گرفته شده است.

شكل (٣): بلوك دياكرام الكوريتم FFX براي Duct

روش طراحی یک سیستم کنترل فعال نویز فازی بصورت زیر است: الف) گام اول: یک فیلتر FIR فازی از مرتبه $N-1$ بوسیله M قانون F سی I FIR بصورت زیر طراحی می شود: Rule¹:IF x_k is F_0^1 and ... and $x_{k-(N-1)}$ is F_{N-1}^1 THEN u_k is U^1 (1)

که x_{k-1} که توسط اطلاعات عددی و زبانی مشــخص (نشان می σ هند. مجموعه فازی $U^{\,l}$ که توسط اطلاعات عددی و زبانی مشــخص میشود را در ابتدا بطور دلخواه میتوان تعیین کرد. M مجموعه فازی $F_i^{\,l}$ برای هر نمونه ورودی x_{k-i} دارای توابع عضویست گوسی زیر میباشد:

$$
\mu_{F_i'}(x_{k-i}) = \exp\left[-\frac{1}{2}\left(\frac{x_{k-i} - \overline{x}_i'}{\delta_{xi}'}\right)^2\right]
$$
\n(7)

که $l=1,2,\ldots, M$ و $l=0,1,2,\ldots$ و $\overline{x}^{\,\prime}_i$ و $\overline{x}^{\,\prime}_i$ و $\overline{x}^{\,\prime}_i$ و $i=0,1,2,\ldots N$ در $l=1,2,\ldots, M$ در این کاربرد معادل با ۷ پیشنهاد شده هر نمونه ورودی پر پر x دارای هفت عبارت زبانی PM (PS ،ZO ،NS ،NM ،NB و PB مـی باشـند که در شروع بطور یکسان در محدوده سیگنال ورودی [1,1] توزیع شده اند. بعلاوه انحراف معیار اولیه برابر ۰/۱۵ در نظر گرفتــه میشـود [8]

Fuzzy filtered-x

	x_k	x_{k-1}	\cdots	x_{k-N+1}	u_k
Rule1	$NB_{F_0^1}$	$NB_{F_1^1}$	\ldots	NB _{F_{N-1}}	NB_{U^1}
Rule ₂	$NM_{F_0^2}$	$NM_{F_1^2}$	\cdots	$\widehat{NM}_{F^2_{N-1}}$	NM_{U^2}
Rule3	$\overline{NS}_{F_0^3}$	$NS_{F_1^3}$	\ldots	$NS_{F_{N-1}^3}$	NS_{U^3}
Rule4	$ZO_{F_0^4}$	$ZO_{F_1^4}$	\cdots	$ZO_{F_{N-1}^4}$	ZO_{U^4}
Rule5	$\overline{PS_{F_0^5}}$	$PS_{F_i^s}$	\cdots	$PS_{F_{N-1}^5}$	PS_{U}
Rule ₆	$PM_{F_0^6}$	$PM_{F_1^6}$	\bullet \bullet \bullet	$PM_{F_{N-1}^6}$	PM_{U^6}
Rule7	$PB_{F_0^{\gamma}}$	$PB_{F_i'}$	\cdots	$\widehat{PB}_{F^7_{N-1}}$	\overline{PB}_{U}

جدول (۱): قوانين IF-THEN بكار كرفته شده در الكوريتم FFX

ب) گام دوم: اگر خروجـی فیلـتر FIR فـازی بصـورت ${f}_\k$ (${A}_\k$ در نظــر گرفتـــه شــود کـــه A دنبالــه نمونـــه ورودی بصــورت است آنگاه $(x_k, ..., x_{k-(N-1)})$

$$
f_{k}(A_{k}) = \frac{\max_{i} \theta^{i} (\min_{i} \mu_{F_{i}^{i}}(x_{k-i}))}{\max_{i} (\min_{i} \mu_{F_{i}^{i}}(x_{k-i}))}
$$
(*)

که $\theta^l\in R$ نقطه ای است که $\mu_{_F{}^l}$ در آن به مقدار ماکزیمم خود میرسد. فیلتر با استفاده از موتــور اسـتنتاج مینیمــم و فـازی زدای centriod و با ترکیب M قاعده فازی تعریف شده در گام اول، بدست آورده می شود. ج) گام سوم: برای مینیممسازی توان خطای خروجی الگوریتم FFX میتواند پارامترهای آزاد خود نظیر $\bar{x}_{i.k}^l$ ، $\bar{x}_{i.k}^l$ و $\delta_{x_i.k}^l$ را بطــور

خودکار در گام زمانی $\,$ $\,$ تصحیح کند[5]: \mathcal{L}

$$
\theta_{k+1}^l = \theta_k^l + \lambda \, e_k \, \frac{\rho_k^l}{q_k} \tag{5}
$$

$$
\overline{x}_{i,k+1}^1 = \overline{x}_{i,k}^1 + \lambda e_k \gamma_k^1 \frac{x_{k-i} - \overline{x}_{i,k}^1}{(\delta_{xi,k}^1)^2}
$$
 (6)

$$
\delta_{xi,k+1}^{l} = \delta_{xi,k}^{l} + \lambda e_{k} \gamma_{k}^{l} \frac{\left(x_{k-i} - \bar{x}_{i,k}^{l}\right)^{2}}{\left(\delta_{xi,k}^{l}\right)^{3}}
$$
\n⁽⁹⁾

$$
p_{k}^{l} = \max \left(\exp \left[-\frac{1}{2} \left(\frac{x_{k-i} - \overline{x}_{i,k}^{l}}{\sum_{i=1}^{l}} \right)^{2} \right] \right) \tag{V}
$$

$$
g_{k} = \sum_{i=1}^{M} p_{k}^{i}, \quad \gamma_{k}^{i} = \frac{\theta_{k}^{i} + u_{k}}{\theta_{k}^{i}} p_{k}^{i}
$$
 (A)

$$
q_k = \sum_{l=1}^{\infty} p_k \qquad , \quad \gamma_k = \frac{\cdots}{q_k} p_k \tag{A}
$$

این الگوریتم FFX نامیده میشود زیرا در عبارات تصحیح پارامترهای آزاد و نیز استنتاج فـازی بـا الگوریتـم FXLMS كلاسـيک متفـاوت است. بعلاوه الگوریتم FFX برای تطبیق هر جفت ورودی و خروجی با دقت دلخواه توسط انتخاب صحیح پارامترهای اولیه $\vec{\sigma}^I$ و \vec{x}^I و می تواند استفاده شود. بنابراین در کاربرد حذف فعال نویز پارامترهای آزاد را می توانیم بصورت زیر انتخاب کنیم: δ_{xi}^{I} $\bar{x}_{i,0}^1 = x_{k-i}$, $\bar{x}_{i,0}^1 \neq x_{k-i}$ for $l \neq 1$ (9)

$$
\theta_0^1 = -x_k \frac{P}{H_k} \tag{1.1}
$$

بنابراین با این انتخاب مخرج معادله (۳) برای هر δ_{x}^l یک میگردد. بعلاوه θ_0^l ($l\neq l$) میتوانند صفر انتخاب گردند. به همین دلیــل توان نویز باقیمانده میتواند بطور دلخواهی کوچک شود و پارامترهای آزاد بطور خودکار به سوی مقادیر بهینه همگرا شوند. بنـابراین FFX میتواند سریعتر از الگوریتم کلاسیک همگرا گردد[7]. نویز باقیمانده نیز میتواند به مینیمم کلی برسد. بدلیل اینکه مخرج توابــع عضویــت

FFX غیر صفر است سیستم ANC فازی در فرآیند تطبیق خود به ناحیه ناپایداری واگرا نمیگرددد[9]. بعلاوه الگوریتــم FFX از تعداد داده های کمتری برای تحقق کنترلکننده استفاده میکند[7]. در ضمن نیازی به در نظرگرفتن توابع تبدیل آکوســتیکی و عنــاصر الکتریکی نمی،باشد.

3) مقایسه دو الگوریتم فازی و کلاسیک در شرایط غیرعلی و نتایج حاصل از آن:

همانطوریکه در مقدمه گفته شد میتوان در برخی مواقع حالت غیرعلی را در سیستم کنترل فعال نویز مشاهده نمود بنــابراین ایــن مسـئله قابل اهمیت است که کیفیت حذف نویز سیستم کنترل فعال نویز در این مواقع چگونه خواهد بود؟ برای بررسی این موضوع، الگوریتم فازی تشریح شده در بخش قبل و الگوریتـــم کلاسـیک FXLMS را در نظـر گرفتـهایم. بلـوک دیـاگرام سیستم ANC در حالت غیرعلی در شکل (۴) نشان داده شده است. همانطوریکه مشاهده میشود، تاخیر خــالص $^{-\delta}$ بـه عنـوان عـامل ایجاد تاخیر و شرایط غیرعلی در نظر گرفته شده است.

شکل (۴): بلوک دیاگرام سیستم ANC مورد استفاده برای شرایط غیرعلی

لازم به ذکر است که فیلتر وفقی مورد استفاده در الگوریتم کلاسیک پارامترهایش را بصورت زیر تنظیم میکند[5]: $\hat{\omega}_{k+1} = \hat{\omega}_k + \mu e_k x_{k-\delta}$

بطوريكه

$$
e'_{k} = d_{k} - y_{k}
$$
\n
$$
u_{k} = \omega_{k}^{T} x_{k-\delta} = \sum_{l=0}^{L-1} \hat{\omega}_{l} x (k-l-\delta)
$$
\n
$$
x_{k-\delta} = [x (k-\delta) x (k-\delta-1) ... x (k-\delta-L+1)]^{T}
$$
\n
$$
\omega_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots x (k-\delta-L+1) \dots \omega_{k}
$$
\n
$$
u_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots \omega_{l} x (k-\delta-1) \dots \omega_{k}
$$
\n
$$
u_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots \omega_{l} x (k-\delta-1) \dots \omega_{k}
$$
\n
$$
u_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots \omega_{l} x (k-\delta-1) \dots \omega_{k}
$$
\n
$$
u_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots \omega_{l} x (k-\delta-1) \dots \omega_{k}
$$
\n
$$
u_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots \omega_{l} x (k-\delta-1) \dots \omega_{k}
$$
\n
$$
u_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots \omega_{k}
$$
\n
$$
u_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots \omega_{k}
$$
\n
$$
u_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots \omega_{k}
$$
\n
$$
u_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots \omega_{k}
$$
\n
$$
u_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots \omega_{k}
$$
\n
$$
u_{k} = \sum_{l=0}^{L-1} \omega_{l} x (k-\delta-1) \dots \omega_{k}
$$
\n $$

نتايج شبيه سازي:

سیستم کنترل فمال نویز با مشخصات زیر در نظر گرفته شده است[7]:
مشخصه آکوستیکی duct یعنی (*P(z) و* مسیر خطا (z) بترتیب توسط تاخیرهای زصانی خالص ۲۵و۵ نمونه مدل شده اند.
بلندگوی ثانویه (z) ی
$$
H_{s}
$$
 (z) بصورت یک فیلتر بالاگذر باترورث از مرتبه دوم و با فرکانس قطع ۶۰ هرتر میباشد. ا— N نیز معادل ازیر در
انظر گرفته شده است.

$$
n(i) = \frac{\sqrt{2}}{2}n(i-1) - 0.25n(i-2) + 0.5\varepsilon(i)
$$

که در رابطه بالا $\, \varepsilon(i) \,$ نویز گوسی با متوسط صفر و واریانس یک است. عملکرد سیستم ANC به ازای تاخیرهای مختلف از صفــر تـا ۴۵ مورد بررسی و آزمایش قرار گرفتــه اسـت. همانطوریکـه در شـکل (۵) مشـاهده می شـود در حـالتی کـه هیچگونــه تـاخیری وجـود نـدارد
۵۰٪ می کنسته ی در ارکان کردیا ہے کہ الگوریتم فازی در مقایسه با الگوریتم کلاسیک، ضمن اینکه دارای کیفیت حذف نویـز بـهتری اسـت
(6 = 6)، الگوریتم فازی در مقایسه با الگوریتم کلاسیک، ضمن اینکه دارای کیفیت حذف نویـز بـهتری اسـت، دارای سـرعت سریعتری نیز میباشد.

شکل (۵): منحنی بالا، نویز مرجع ۸%استفاده شده برای مقایسه دو الگوریتم فازی و کلاسیک در شرایط غیرعلی- منحنی وسط، خطای حاصل از
میرا همیدانام می باشد و با نفستند و با نفستند بکارگیری الگوریتم فازی برای حذف نویز مرجع $\,x$ – منحنی پائین، خطای حاصل از استفاده الگوریتم کلاسیک برای حذف نویز مرجع $\,$

شکلهای (۶) و (۷)، نتایج ناشی از دو الگوریتم فازی و کلاسیک را بترتیب به ازای دو تاخیر ۲۵ و ۴۵ نشان میدهند. مشاهده میشــود کـه علیرغم وجود تاخیر، حذف نویز با استفاده از الگوریتم فازی بهتر انجام میشود و حساسیت الگوریتم فازی بــه قیـد علیت و مـیزان تـاخیر
بم در ابرای میتران به حالی به استفاده از الگوریتم فازی بهتر انجام میشود و حساسیت الگوریتم فازی كمتر از الگوريتم كلاسيك مىباشد.

شکل (6): نتایج حاصل از شرایط غیرعلی به ازای تاخیر مساوی با ۲۵- منحنی بالا، نویز مرجع - منحنی وسط، خطای حاصل از بکارگیری الگوریتم فازی - منحنی پائین، خطای حاصل از بکارگیری الگوریتم کلاسیک

شکل (۷): نتایج ناشی از شرایط غیرعلی برای تاخیر مساوی با ۴۵، منحنی بالا، نویز مرجع- منحنی وسط، خطای حاصل از بکارگیری الگوریتم فازی-منحنی پائین، خطای حاصل از الگوریتم کلاسیک

برای درک روشنتری از نحوه عملکرد دو الگوریتم فازی و کلاسیک، کمیتی بنام کیفیت حذف نویز که از نسبت واریانس خطــای حـاصل از هر الگوریتم و واریانس نویز مرجع بدست میآید، بصورت زیر تعریف شده است[6]:

efficiency = $1 - \frac{\text{var}(e_k)}{\text{var}(d_k)}$

لازم به ذکر است که برای محاسبه این کمیت از ۵۰۰ نمونه آخر مقادیر خطا و نویز استفاده شده است. همچنین شبیهسازی بـه تعـداد ۵۰ بار تکرار شده است و از این تعداد تکرار متوسط گیری به عمل آمده است. نتیجه حاصل در شکل (۸) نشان داده شده است.

شکل (۸): کیفیت حذف نویز برای الگوریتم فازی (منحنی ستاره) و الگوریتم کلاسیک (منحنی خطچین)

۴) نتيجەگيرى:

در این مقاله، الگوریتم فازی برای کنترل فعال نویز مورد استفاده قرار گرفت. مشاهده شد که الگوریتم فسازی دارای مزایبایی چـون سـرعت بیشتر در همگرایی و نیز کیفیت بهتر حذف نویز میباشد. ضمن اینکه در شرایط غیرعلی، الگوریتم فازی مذکـور دارای حساسـیت کمـتری نسبت به قيد عليت بوده و حذف نويز را نسبت به الگوريتم كلاسيك FXLMS بهتر انجام ميدهد.

۵) مراجع:

[1] S.M. Kuo, D.R. Morgan, "Active Noise Control: A Tutorial Review", Proc. IEEE, Vol. 87, No. 6, pp. 943-973, June 1999.

 $[2]$
York: Wiley, 1996. Active Noise Control Systems- Algorithms and DSP Implementations. New

[3] S.J. Elliot, P.A. Nelson, "Active Noise Control", IEEE Signal Processing Magazine, pp. 12-35, October 1993.

[4] C.H. Hansen, S.D. Synder, Active Control of Noise and Vibration. London: E&FN Spon, 1997.

[5] B. Widrow, S.D. Stearns, Adaptive Signal Processing, Prentice-Hall, N.J., 1985.

[6] X. Kong, S.M. Kuo, " Study of causality constraint on feedforward active noise control systems", IEEE Trans. On Circuit and Systems-II: Analog and Digital Processing, Vol. 46, No. 2, pp. 183-186, Feb. 1999.

[7] K.K. Shyu, C.Y. Chang and M.C. Kuo, "self tuning controller with fuzzy filtered-x algorithm", *Electronic Letters*, Vol. 36, No. 2, PP. 182-184, 20th January 2000.

[8] C. C. Lee, "Fuzzy logic in control systems: fuzzy logic controller, Part I", IEEE Trans., SMMC-20(2), pp. 404-418, 1990.

[9] Y.M. Park, K.Y. Lee, "A self-organizing power system stablizer using fuzzy auto-regresive moving average (FARMA) model", IEEE Trans. Energy Conversion, EC-11(2), pp. 442-448, 1996.