
     

 
 

 
 
 
 
 
 
 
 
 
 
 

ADAPTIVE NEURO-FUZZY CONTROLLER FOR HYBRID  
POSITION/FORCE CONTROL OF ROBOTIC MANIPULATORS 

 
 

Arash Fanaei        Mohammad Farrokhi 
 
 

Faculty of Electrical Engineering  
Iran University of Science and Technology 

Tehran16844 - Iran 
 
 
 
 

Abstract: In this paper, an adaptive control method for hybrid position/force control of robot 
manipulators, based on neuro-fuzzy modelling, is presented. Also, an adaptive neuro-fuzzy 
compensator compensates the friction force between the endeffector and the surface of the 
object. Due to the adaptive neuro-fuzzy modelling, the proposed controller is independent of 
the robot dynamics. Also, the stability of the controller is guaranteed, since the adaptation law 
is based on Lyapunov theory. The simulation results show good performance of the proposed 
controller as compared with other conventional control schemes such as computed torque 
method.   
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1. INTRODUCTION 

 
When the endeffector of a robot manipulator comes in 
contact with a surface with friction and unknown 
stiffness, there must be force control in addition to the 
position control of the endeffector. This task is well 
known as the position/force control of robot 
manipulators. Two force control methods have been 
extensively studied by many researchers in the past two 
decades: 1) the hybrid position/force control method 
(Hsu and Fu, 2000) and 2) the impedance control 
method (Hogan, 1985). In both methods a precise 
control scheme is necessary in order to move the 
endeffector on the right path, exerting the correct 
amount of force on the object.  
 
In recent years, intelligent methods and algorithms, like 
neural networks and fuzzy logic have been employed 
for position/force control of robot manipulators. Hsu 
and Fu (2000) have proposed an adaptive fuzzy hybrid 
position/force controller, in which the adaptive 
parameters are the centers of the membership functions 
in the tally part of the fuzzy IF-THEN rules, but the 

friction force has not been taken into account. Kiguchi 
et al. (1999) have also used a neuro-fuzzy method for 
position/force control, but with a simple and static 
model for the friction between the endeffector and the 
contact surface. The friction compensation has been 
performed with one neuron, whose output is multiplied 
to a weight, which is the coefficient of the static friction 
of the surface. But the weight is not trained adaptively. 
The proposed controller by Xiao et al. (2000) has the 
advantage of handling the position/force control in an 
uncalibrated environment. But, the controller needs an 
optical sensors and a visual system to observe the 
conditions of the surface.  
 
In this paper an adaptive neuro-fuzzy controller with an 
adaptive neuro-fuzzy friction compensator is proposed 
for hybrid position/force control of robot manipulators. 
Thanks to the adaptive neuro-fuzzy modelling, both for 
the controller and the friction compensator, the 
proposed method is independent of the robot dynamics 
as well as the conditions of the environment. The main 
advantage of the proposed control method is that the 
adaptation law is based on the Lyapunov stability 



     

theory, which guarantees the stability of the controller. 
Although the simulations are performed on a robot 
manipulator with three degrees of freedom with 
revolute joints, the proposed controller can be extended 
to robot manipulators with more degrees of freedom 
and different kind of joints. Moreover, the structure of 
the controller and the compensator is very simple, 
making it a very fast and appropriate method for 
different applications of robot manipulators. The 
simulation results show good performance of the 
proposed method as compared with other conventional 
control methods such as computed torque method. 
 
 
2. MANIPULATOR DYNAMICS AND THE MODEL 

OF CONTACT SURFACE 
 
 
2.1 Manipulator Dynamics 
 
The dynamic equation of a robot manipulator can be 
expressed in Cartesian space as (Lewis et al., 1993): 

( ) ( ) − −x x x x e sM x x + C (x, x) + G x + D (x) = f f f&& & &   (1) 
where 1n×∈x ¡  is the position vector of the 
endeffector, ( ) n n×∈xM x ¡  is the inertia matrix, 

1n×∈xC (x,x)& ¡  is the centrifugal and coriolis force 
vector, 1n×∈xG (x) ¡  is the gravity force vector, 

1n ×∈xD (x)& ¡  is the vector for joint friction force of the 

robot arms, 1n×∈f ¡  is the required force vector to 
move the endeffector, 1n×∈ef ¡  is the applied force 

vector to the surface by the endeffector, and 1
s

n×∈f ¡  
is the force vector for the surface friction in Cartesian 
coordinate. Equation (1) can also be written as 

m e s( ) ( ) − −x x x xM x x + C (x, x) x + G x + D (x) = f f f&& & & &   (2) 
where xm

n n×∈C ¡ . The robot manipulator used in this 
paper has 3DOF, consisting of waist, shoulder and 
elbow. 
 
 
2.2 The Characteristics of the Contact Surface 
 
In order to characterize the surface, which comes in 
contact with the endeffector, two mathematical models 
are considered here: the perpendicular model and the 
tangent model.  

The Perpendicular Model. The mathematical model in 
the perpendicular direction of the contact surface is a 
spring model (Kiguchi et al. 1999). If the external 
applied force to the surface is shown with ef , then 

( )e e ef k x x= − , where ek  is the stiffness coefficient 

of the surface, in N/m, and x  and ex are the position 
of the endeffector and the surface, respectively.  

The Tangent Model. When an object is moving on a 
surface, there will be friction force between the object 
and the surface. This force is due to the applied 
perpendicular force to the surface and is in the opposite 
direction of the movement. There are many models 
available in the literature to represent friction forces. 
Bona and Indri (1995) have shown that a 

comprehensive mathematical model for friction force 

sf  can be given in terms of applied perpendicular force 

ef  as 

1 2
0 1 2 (1 ) sgn( )v v

s ef e e f vβ βγ γ γ− − 
  

= + + −  (3) 

where v  is the speed of the object, 0 1( ) efγ γ+  is the 

stiction friction, 0 2( ) efγ γ+  is the dynamic friction at 

higher speeds, ( , 0,1, 2)i i ef iγ α= = ,
1

β  shows the 
damping rate of friction at lower speeds and also is an 
indication of negative slope in the stiction region  (Bona 
and Indri, 1995), and 

2
β  specifies the ascending rate of 

friction at higher speeds.  
 
 

3. ADAPTIVE NEURO-FUZZY CONTROLLER 
 

The task of the controller is to move the endeffector 

along the desired path [ ]1 2 3
T

d d d dx x x=x , on a 

surface in the 1 2x x−  plane, and since the force is 

applied to the surface along the 3x  axis, 

then ( )3 3e e ef k x x= − . Therefore, the desired path 
and the desired force can be defined as 

[ ]d 1 2 / T

d d d ex x f k=x , [ ]d 0 0 T
ef=f  (4) 

The errors between the desired and the actual vectors 
for the position, velocity and acceleration of the 
endeffector are 

1 1 2 2

d d,

T

d e
d d d

e

f f
x x x x

k

−
= − = − −

= − = −

 
  

e x x

e x x e x x& &&& & && &&

 (5) 

Now, let define the sliding vector 1n×∈s ¡  as 
+s = e Λe&                              (6)  

where { }1diag , ..., n n

nλ λ ×= ∈Λ ¡  is a diagonal and 
positive definite matrix. Differentiating  (6) with respect 
to time and calculating e&&  in terms of s  using (2) yields 

x x d xm d xm x x e sM (s - Λe) = M x + C x - C (s -Λe) + G + D + f + f - f& & && &   
(7) 

Then, selecting the control law as 

x d xm d x x

e s

f = M (x + Λe) + C (x + Λe) + G + D

+f + f + Ks

&&& &
   (8) 

where n n×∈K ¡  is a positive definite matrix, and 
substituting (8) into (7)  and rearranging terms gives 

x xmM s + (C + K) s = 0&                      (9) 
In this equation, since the coefficients are not zero, the 
sliding vector s  approaches zero, which means that Eq. 
(9) shows the stability of the closed-loop system as 
well. But the main obstacle in realizing this control law 
is that matrices ,x xm xG , C , M and xD  in (8) are 
usually undefined and unknown. Some of the terms of 
the control law (8) can be written as (Craig, 1989): 

d d x d xm d

x x

Y(x, x, x , x )φ = M (x + Λe) + C (x + Λe)

+ G + D

&& & && &
 (10) 



     

where r×1∈φ ¡  is a vector of the unknown parameters 

and n×r∈d dY(x, x, x , x )& & ¡  is a regression matrix and 
known. Vector φ  can be considered as the adaptive 
parameter, which should be adjusted in such a way to 
guarantee the stability and the minimum error of the 
closed loop system. Eq. (10), which is the nonlinear part 
of control law (8), can be written using robust control 
method (Hsu and Fu, 2000) as 

=d d x d

xm d x x

Y(x, x, x , x )φ = h( x , s) M (x + Λe)

+C (x + Λe) + G + D

&& & &&

&
   (11) 

where x  is the norm of the position vector, s  is the 

sliding vector defined in (6), and n×1∈h( x , s) ¡  is an 
unknown vector whose elements can be defined as 

* T
i i i ih s( x , s) = w η ( x , )               (12) 

where r 1

i is ×∈η ( x , ) ¡  and *
iw  is the optimal value 

of r×1
i ∈w ¡ . Hence, the control law (8) becomes 

1

* * *
1 1 2 2 2 3 3 3

TT T Ts s s  f = w η ( x , ) w η ( x , ) w η ( x , )

e s+f + f + Ks                                                    (13) 

where 1 2 3[ ]T T T T=w w w w  is the adaptive parameter of 
the controller for 3 3DoF robot and must be adaptively 
trained as on-line to minimize the tracking error and to 
maintain the stability of the closed-loop system as well. 
Since the proposed controller in this paper is of neuro-
fuzzy type, therefore, w  is considered as the weight 
vector of the neuro-fuzzy network. Also, another 
adaptive neuro-fuzzy estimator, whose design will be 
explained in the next section, will compensate the 
friction force. 
 

Each subcontroller (i.e. one controller for every 
joint) has two inputs, x , the norm of the position 

vector, and is , the ith component of the sliding vector 
s  in (6). The fuzzy rules of these subcontrollers can be 
defined as 

1 2 1 2 1 2R : IF is and is THEN isj j j j j j

i i i i iA s A y Bx  
(14) 

where 1j
iA  and 2j

iA  ( 1, 2, 3i = ), ( 1 11, ,j l= … ), 

( 2 21, ,j l= … ) are the 1thj  and the 2thj  fuzzy sets 

defined for the fuzzy input variables x  and is , in the 

ith subcontroller, respectively, and 1 2j jB  are the fuzzy 
sets for the tally part of the fuzzy rules. Using the 
Mamdani product inference engine, singleton fuzzifier, 
and center average defuzzifier, the output of the ith 
subcontroller can be calculated as 

( )
1 2

1 2

1 2
1 2

1 2

1 2

1 2

Nf

1 1

1 1

( ) ( )

( ) ( )

,
i

j j

j j

T
i

i

i

i i

l l
j j

A A
j j

l l

A A
j j

f s

s y

s

µ µ

µ µ

= =

= =

=

=
∑ ∑

∑ ∑

x

x

x

w η

       (15) 

where 1 2j jy are the center of the membership functions 

defined for fuzzy sets 1 2j jB  in (14).  
 

The adaptive parameters of the subcontrollers are 
the center of the membership functions defined for 

fuzzy sets 1 2j jB  (i.e. 1 2 sj jy ), which are the elements 
of w  in the adaptive control law (13). Therefore the 
three subcontrollers must be trained in such a way that 
the nonlinear functions , )T

i i isw η ( x  (i = 1, 2, 3) are 
estimated with good accuracy. This adaptation law is 
based on Lyapunov stability theory and will be derived 
in section 5. In the next section, an adaptive neuro-fuzzy 
compensator will be developed for surface friction. 
 
 

4. ADAPTIVE NEURO-FUZZY COMPENSATOR 
FOR SURFACE FRICTION 

 
When the tip of the endeffector moves on the surface of 
an object, the surface friction force affects the 
performance of the controller and deters the correct task 
of the robot manipulator. Hence, it is important to 
compensate this friction properly; otherwise there will 
be large steady-state error. The friction force is affected 
by the movement of the endeffector on the surface and 
cannot be directly measured. The models given in 
section 2 have uncertainties and their parameters are 
unknown in practice. Moreover, the model may not 
precisely define the surface friction. Several methods 
have been proposed in literature for surface friction 
force compensation. The proposed method by Park et al. 
(2003) estimates the surface friction force using an 
adaptive neuro-fuzzy estimator. The free parameters of 
this estimator are updated adaptively using the tracking 
errors until the friction force is completely 
compensated. Since the surface friction force is directly 
proportional to the applied force to the surface and has a 
nonlinear relationship with the velocity of the 
endeffector, the appropriate input to the proposed 
estimator should be the velocity of the joints in the 
Cartesian space. Therefore, three subcompensators, one 
for every direction in the Cartesian Space, must be 
designed. The fuzzy rules for subcompensators are 
defined as 

R : IF is THEN isj j j
i i i i ix A y B&    (16) 

where ( 1, 2, 3)ix i =&  is the ith component of the 
velocity vector of the endeffector in the Cartesian 

coordinates, j
iA and ( 1, 2, 3, 1, , )j

iB i j l= = …  are 
the jth fuzzy sets defined for the input and the output for 
the ith subcompensator, respectively, and iy  is the 
output of the ith subcompensator, which must be 
multiplied to ef  and added to the output of the neuro-
fuzzy controller obtained form the equations in the 
previous section. Using singleton fuzzifier, product 
inference engine, and center average defuzzifier, the 
output of the ith neuro-fuzzy subcompensator cab be 
expressed as 

1 1

( ) ( )j j
i i

i

l l
j

i iA A
j j

y x y xµ µ
= =

= ∑ ∑& &           

(17) 



     

where jy  is the center of the jth membership function 
of the tally part of the fuzzy rules in (16) and also the 
free parameters of the neuro-fuzzy subcompensators. 
Hence, The compensated force for surface friction in 
the ith direction is 

ŝ i i ef y f=                           (18) 

where ŝ if  is the estimation of the ith component for 

surface friction and ef  is the perpendicular force, 
applied to the surface of the object, and measured by 
the force sensor. Eq. (17) can be written in the 
following vector notation form 

( )T
i i i iy x= θ ξ &                         (19) 

where 1 Tl
i y y=   θ L is a vector containing the 

free parameters of the ith neuro-fuzzy subcompensator, 

1

( ) [ ( ) ( ) ] ( )l l j
i i i

l

i i i i iA A A
j

x x x xµ µ µ
=

= ∑ξ & & & &L  

and l is the number of fuzzy rules. Therefore, the 
estimated force for surface friction compensation is 

1 1 1 2 2 2
ˆ ˆ [ ( ) ( ) 0]T T T

e ex f x f=s sf = f (x θ) θ ξ θ ξ& & &  (20) 

where 1 2 0
TT T=   θ θ θ . The third component of the 

friction force is zero, because there are no desired 
movements in this direction. Hence, the control law 
given in Eq. (13) can be written as 

* ˆT
e sf = w η + f + f (x θ) + Ks&              (21)         

where 1

* * * *
2 3

TT T T=   w w w w .  
 
 

5. ADAPTATION ALGORITHM FOR THE 
CONTROLLER AND THE COMPENSATOR 

 
There are two sets of parameters, w  and θ , which 
must be trained during operation of the robot to reach 

their optimal values 
*w  and 

*θ , respectively. 
Therefore, the errors for subcontrollers and 
subcompensators can be defined as 

*

*
, 1, 2, 3i i i

i i i

i =




ψ = w - w

φ = θ - θ
             (22) 

 As a result, there are three sets of errors in the whole 

system, namely 1 2 3[ ]T T T T=ψ ψ ψ ψ , 

1 2 3[ ]T T T T=φ φ φ φ , and ( ) ( )d d− + −s = x x Λ x x& & , 
which can be incorporated into one error function in 
quadratic form, which is the candidate for the Lyapunov 
function 

1 1

1 1

1 1 1

2 2 2

n n
T T
i i i i i i

i i

V − −

= =

= + +∑ ∑T
xs M s ψ Γ ψ φ Φ φ (23) 

where n=3 for a 3DoF robot, xM  is the same as in Eq. 

(1), and { }1diag , , r r
i ri iγ γ ×= ∈Γ … ¡  and 

{ }1diag , , l l
i ri iφ φ ×= ∈Φ … ¡  are diagonal and 

positive definite matrices, in which r and l are the 
number of fuzzy rules in the ith subcontroller and ith 

subcompensator, respectively. Differentiating (23) with 
respect to time yields 

1 1

1 1

1

2

n n
T T T T

i i i i i i
i i

V − −

= =

= + +∑ ∑x xs M s + s M s ψ Γ ψ φ Φ φ& && & &  

                            (24) 
Using Eqs. (22) and (21) and noting that 2x xmM - C&  is 
a skew symmetric matrix 

*
1 1 1 1 1 1

*
2 2 2 2 2 2

*
3 3 3 3 3 3

ˆ

T T

T T
T

T T

s s

s s
V

s s

−
=

+ − −

    
    
    
    
    
 
 s s

w η ( x , ) w η ( x , )

w η ( x , ) w η ( x , )
s

w η ( x , ) w η ( x , )

f f (x θ) Ks

&

&

   

       1 1

1 1

n n
T T
i i i i i i

i i

− −

= =

+ +∑ ∑ψ Γ ψ φ Φ φ& &                         (25) 

Now, let ˆ *
s sε = f (x) - f (x θ )& &  be the error between the 

estimated friction force and its actual value. Then 

1

1

n
T T T T

i i i i i i i
i

V s s−

=

= + + +∑-s Ks s ε ψ Γ ψ ψ η ( x , )& &  

1
i

1

( )
n

T T
i i i i i i e

i

s x f−

=

+ +∑φ Φ φ φ ξ& &   (26)                       

If matrix K  is a positive definite matrix, then 
T T>s Ks s ε  since ε  is a small number. Consequently, 

the following conditions must be hold in order to have 
0V <& : 

1

1
i

0
1, ,

( ) 0

T T
i i i i i i i

T T
i i i i i i e

s s
i n

s x f

−

−

+ =
∀ =

+ =

ψ Γ ψ ψ η ( x , )

φ Φ φ φ ξ

&
…

& &
 

(27)  

Since *
i i iψ = w - w& & &  and *

i i iφ = θ - θ& && , and also since 

at the optimal point * 0iw =&  and * 0i =θ& , it can be 
concluded that 

i

1, ,
( )

i i i i i

i i e i i

s s
i n

s f x
∀ =

=

w = Γ η ( x , )

θ Φ ξ

&
…& &

     (28) 

Integrating these equations gives the adaptive 
algorithms for updating the free parameters of the 
neuro-fuzzy subcontrollers and the neuro-fuzzy 
subcompensators 

2

2 1 1

2

2 1 i1

( ) ( )
1, ,

( ) ( ) ( )

t

i i i i i it

t

i i i e i it

t t s s dt
i n

t t s f x dt

= +
∀ =

= +

∫

∫

w w Γ η ( x , )

θ θ Φ ξ
…

&
                        (29)  

Using these equations, the parameters are updated until 
they reach their optimal values in order to bring the 
position and the force errors to minima. One important 
point is that equations (29) are independent of the robot 
dynamics and the surface friction. They also guarantee 
the stability of the closed-loop system, since they have 
been derived in such a way that the derivative of the 
Lyapunov function remains always negative. 
Substituting Eqs. (28) in (26) yields 

T TV = - s Ks + s ε&                        (30)  



     

Hence, it can be concluded that 0V <&  if and only if 
T T>s Ks s ε , which intuitively should be true since ε  

is small. But there cannot be any guarantee that the 
estimated friction force is close enough to its actual 
value, resulting to T T≤s Ks s ε  and 0V ≥& , yielding an 
unstable system. To overcome this problem, the 
following robust control law will be used (Sugie, 1988): 

1 1 1

2 2 2

3 3 3

( )

ˆ( ) ( ) sgn( )

( )

T

T

T

s

s

s

+

 
 
 
 
 

e s

w η x ,

f = w η x , + f + f x θ + K s Q s

w η x ,

&                                  

(31) 

where { } 1
1diag , ..., n

nq q ×= ∈Q ¡  is a positive 
definite matrix. Substituting (31) in (25) gives 

sgn( )T TV = -s K s + s ε - Q s&                (32) 

Now, let define the elements of matrix Q  to be 
 , 1,...,i iq i nε≥ =                   (33) 

Then, 0V <& , and 0V =&  only if 0=s , which means 
that the closed-loop system is asymptotically stable. 
 
 

6. SIMULATION RESULTS 
 
The membership functions for the input variables of the 
subcontrollers are 3 gaussian functions equally spaced 
over intervals {0, 1} and {-1, 1} for x and for is , 
respectively. Also, the membership functions for the 
output variable are 9 triangular functions equally spaced 
over interval {-4, 4}. The adaptive parameters for the 
controller (i.e. the elements of vector w ) are the center 
of the membership functions for the output variable. 
The fuzzy rules for subcontrollers have been given in 
Table 1. Therefore, each subcontroller has only 9 rules 
with only 9 adaptive parameters, which must be trained 
adaptively to minimize the tracking errors. The 
membership functions for the input variables of the 
subcompensators ( 1x&  and 2x& ) are 7 gaussian functions 
equally spaced over intervals {-2, 2}. Also, the 
membership functions for the output variable are 7 
triangular  functions  equally spaced over the interval  
{-0.6, 0.6}. The adaptive parameters of the compensator 
(i.e. the elements of vectorθ ) are the center of the 
membership functions for the output variable. The 
fuzzy rules for subcompensators have been given in 
Table 2. As this table shows, each compensator has 
only 7 rules with only 7 adaptive parameters, which 
must be updated adaptively for a better estimation of 
the actual surface friction. 
 
Although the designed controller in this paper is 
adaptive, but for faster convergence, the initial values of 
the adaptive parameters (the centers of membership 
functions for the tally part of the fuzzy rules) are 
defined using prior knowledge of the system, which is 
one of many advantages of fuzzy systems. 
The 3DoF robot manipulator, used in simulations, has 
waist, shoulder and elbow with the following lengths 
and masses for its three arms: 

1 2 30.5m , 0.8m , 0.3ml l l= = =  

1 2 32kg , 1kg , 1kgm m m= = =  
Also, the following parameters have been chosen for the 
neuro-fuzzy controller and the neuro-fuzzy 
compensator: 

=diag{30 30 30}, =diag{0.4 0.4 0.4}K Λ  

=diag{50  50 50} , =diag{50  50 50}i ii i∀ ∀Γ Φ  
=diag{10  10  10}Q  

The desired path is a circle in 1 2x x−  plane with a 
radius of one meter and the center at the origin. The 
endeffector must exert 10 N force on the surface while 
following the desired path. In order to show the 
adaptation ability of the proposed controller and the 
proposed compensator, the mass of the arms are 
increased by 100% of their initial values at 5 st = . 
Figs. 1 shows the position and force control for 12 s of 
real time. As this Fig. shows, the proposed method in 
this paper is perfectly capable of controlling the position 
and the applied force of the endeffector to the desired 
values even with large amount of changes in the system 
parameters. 
 
To compare the performance of the proposed controller 
with another method, simulations have been performed 
for the same robot with computed torque method, which 
is dynamic dependent and nonadaptive (Lewis et al., 
1993). The simulation results have been shown in Fig. 
2. As this figure shows, when there are no changes in 
the system parameters, the controller can perform a very 
task with almost no steady state error. But, since the 
computed torque method is dynamic dependent, any 
changes in the robot parameters can create large errors, 
especially for 100% increase in the arms masses it 
becomes unstable.  
 
Fig. 3 shows the changes in the parameters of one of the 
adaptive neuro-fuzzy subcontrollers, for the case of 
100% increase in the arms masses. As this figure shows, 
the initial values of the adaptable weights are very close 
to the desired values, since these weights have been 
defined using the prior knowledge from the system. 
Also, as the parameters of the system change at t=5 s, 
the weights quickly adapt themselves to these changes, 
maintaining small amount of tracking errors for the 
position control as well as the force control. Fig. 4 
indicates that the derivative of the Lyapunov function, 
defined in Eq. (23), remains negative for the case of 
100% increase in the arms masses of the robot, meaning 
that the system is stable at all time. 
 
 

7. CONCLUSIONS 
 

An adaptive neuro-fuzzy controller for hybrid 
position/force control of robot manipulators and an 
adaptive surface friction compensator was presented in 
this paper. The proposed algorithms were designed to be 
independent of the robot dynamics, resulting into an 
exceedingly robust closed loop system. This is because, 
the adaptation law of the free parameters was derived 
based on the Lyapunov stability theory. The other 
advantage of the proposed method is the simple 
structure of the controller and the compensator. There 
are only 9 and 7 fuzzy rules for every subcontroller and 
every subcompensator, respectively, making it simple, 
fast and appropriate method for different applications of 
robot manipulators.  
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Table 1: Fuzzy rules for the ith subcontroller 
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Table 2: Fuzzy rules for the ith subcompensator 
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Fig. 1- Position and force control with 100% increase in 

arms masses at t=5 s (proposed method). 
 
 
 
 
 
 
 
 
 
 

Fig. 2- Position and force control with 100% increase in 
arms mass at t=5 s (computed torque method). 

 
Fig. 3. Adaptive weight changes of one of the 

subcontrollers during operation of the robot, when 
100% increase in arms masses occurs at t=5 s. 

 

 
Fig. 4. Derivative of the Lyapunov function, defined in 

Eq. (23), during operation of the robot, when 100% 
increase in arms masses occurs at t=5 s. 
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