
 
 
 
 
 

 
 
Abstract: In this paper, an indirect combined 
controller is proposed for non-affine nonlinear systems 
based on affine approximate input-output model of the 
system. Here, the NARMA model, which is an exact 
representation of the input-output model, is 
approximated with an affine input-output model. The 
conventional controllers which are based on this 
approximated model dose not guarantee good 
performance of the closed-loop system for large 
magnitude control signal so, in this paper a robust 
combined controller is proposed which guarantees a 
reliable performance for the closed-loop system, even 
for considerable model approximation errors. 
 
Keywords: Sliding mode, nonlinear systems, 
neural networks, model approximation. 
 
1 Introduction 
 
The NARMA model is an exact representation of 
the input–output behavior of finite-dimensional 
nonlinear discrete-time dynamical systems in the 
neighborhood of equilibrium states [1]. However, 
it is not convenient for purposes of adaptive 
control using neural networks due to its nonlinear 
dependence on the control input. As a results 
control system designer are often forced to 
approximate plant dynamics with linear models 
such as ARMA model, or use mathematical 
approximations to overcome the computational 
complexity of neural controller problems [2, 3]. 
Recently, NARMA-L1 and NARMA-L2 have 
been introduced as approximated models of 
NARMA model [3].  
These models are nonlinear with respect to past 
outputs and inputs but linear with respect to the 
current   input and therefore, suitable for control 
design. However, they are still restricted to small  
 

 
 
 
 
 
 

 
 
input magnitude. To eliminate the small magnitude 
requirement, two other approximate models 
NARMA-L1B and NARMA-L2B has been 
proposed in the literature, which require small 
input changes rather than small input magnitude 
[2]. To relax the input magnitude restriction, in this 
paper we propose a hybrid controller which 
combines sliding-mode and feedback linearization 
laws through a fuzzy system. This controller will 
guarantee the stability and performance of the 
closed-loop system against modeling error. 
This paper is organized as follows. In section 2, the 
input-output models of a non-affine nonlinear plant 
are presented; section 3 presents an MLP neural 
network with suitable structure to identify the 
nonlinear non-affine plant as affine NARMA-L2 
model. Moreover, the conventional feedback 
linearization and sliding-mode design will be given 
in this section. Also, two strategies for elimination 
of the chattering, inherent in the sliding-mode 
control law is proposed in section 3. Section 4 
shows the simulation results, and finally 
conclusions are given in section 5. 
 

2 Input-Output Models 
 

Consider a single-input single-output (SISO) 
nonlinear discrete-time system of the form 

 ( )
( )

: ( 1) ( ), ( )

( ) ( )

x k f x k u k

y k h x k

Σ + =

=
                          (1) 

Where ( ) , ( ) , and ( )nx k u k y k∈ ∈ ∈  are  
states, input, and output of system at time k, 
respectively; f is a vector field and h  is  
functions which are smooth on their domains, with 

(0,0) 0f =  and (0) 0h = .  
Let the system Σ  has a relative degree of r at 
(0, 0).  Then, there exists a smooth local change of 
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coordinates ( )z x= Φ with (0) 0Φ =  such that in z-
coordinates, the system becomes [5]: 
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where r is relative degree of system which is 
defined in [4]. Additionally, assume  
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From the normal form of NΣ  we have [5] 
( ) ( )( ), ( ), ( )ry t r F Y k k u k+ = η                              (3) 

where 
[ ]( ) ( ), ( 1),..., ( 1)rY k y k y k y k r− − +                    (4) 

Let NΣ  be observable around the equilibrium state 
(0, 0, 0) . Then, there exist a neighborhood around 
the equilibrium state where )(kη  can be written as  
( ) ( )( )( ),

n r
n n rk Y k n r U k n rη

−

−= Γ − + − +                        (5) 
by substituting (5) into (4) 

( )( )( ))(,),(),()( kurnkUrnkYkYFrky rnnr +−+−Γ=+ −  
( ))(),...,(),(),...,1( rnkukurnkyrkyF +−+−−+=   (6) 

with 
(0, , 0)

( ) 0
( )

F
u k
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≠
∂ …

. The nonlinear auto 

regressive moving average (NARMA) model can 
be derived by iterating (6) r-1 times backwards, as 
follows [3]: 

( ))(),(),(),...,()( 1nkuku1nkykyFrky +−+−′=+    (7) 

with  
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Zero dynamics: If the output of system Σ  is to be 
identically zero, (that is, 0( ) 0 forz k k k= > ) it 
follows that: 
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since ( )
( )

0
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ku

kukkzF η  the implicit 

function theorem implies that a state feedback law 
( ))()( kgku s η=  exists such that 

( ) 0))((),(,0,...,0 =kgkF s ηη  
for )(kη in some neighborhood of rnRN −⊂ , and 
the closed-loop becomes 
 ( )))((),(,0,...,0)1( kgkDk s ηηη =+                           (9) 
If the zero dynamic of Equation (9) is 
asymptotically stable, then it can be shown by the 
implicit function theorem that there is a control 
law as [3] 

))1(),...,1(
),(),1(),...,(()( *

+−−
++−=

nkuku
rkynkykyGku                  (10) 

such that )()( * rkyrky +=+ . 
This suggests that a separate Neural Network (NN) 
can be used as the controller. Since the input of 
this NN contains the history of the output, so a 
dynamic algorithm must be used for training, 
which is all quite slow and computationally 
intensive [6]. In addition to that, this feedback may 
causes instability is training algorithm. Therefore, 
the NARMA model is not convenient for the 
computation of a control input to the plant, in order 
to track the desired reference signals. In view of 
this, a NARMA-L2 model has been proposed in 
[3]. The main feature of this method is that the 
control input )(ku  occurs linearly in equation 
relating inputs to the outputs. This in turn permits 
easy algebraic computation of control inputs 
without requiring a separate neural network 
controller. 
By using a Taylor expansion of   

( ))(),(),(),...,( 1nkuku1nkykyF +−+−′  
around the scalar u(k), the first two components are 
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where 
[ ]( ),..., ( 1), ( 1),..., ( 1)W y k y k n u k u k n= − + − − + The 

reminder 1( , ) ( , ) ( , )R W u F W u P W u′ −  is bounded 
by 
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2

,
2 R

M uR W u ⋅
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where M  is the maximum value of ( )2
2 ,F W uu

∂ ′
∂

. 

Since a continuous function attains a maximum in 
a compact set, the value of M is bounded and 
hence the accuracy of approximation is a function 
of the amplitude of the control signal. Hence, the 
approximated NARMA-L2 model can be presented 
as follows: 

( ) ( )0 0( ) ( )y t r f W g W u k+ = + ⋅                           (13) 

where ( ) ( )0 ,0f F W′⋅ =  and ( )0
( ,0)( ) W
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3 Control Using NARMA-L2 Model 
 
3.1 Identification Using NN 
 
Consider the NARMA-L2 model in Equation (13). 
A Multi-Layer Perceptron (MLP) with suitable 
structure, as in Figure 1, can be used to estimate 

0f  and 0g  in NARMA-L2 model of the plant. 
Also, training of the network can be performed 



offline, by back-propagation algorithm. Moreover, 
the recursive Gauss-Newton algorithm may be 
used online to derive 0f  and 0g [7].    
 

 
 
 
 
3.2 Feedback Linearization 
 
Consider the NARMA-L2 model of Equation (13), 
the conventional feedback linearization control law   

*
0

0

( ) (.)( )
(.)FL

y k d fu k
g
+ −

=                                     (14) 

can be used such that the output of system follows 
the desired signal )(* ky . Using the above control 
in plant dynamic equation, the closed-loop 
equation can be given as 

)()( * rtyrty +=+                                              (15) 
This means that the output of system will track the 
desired signal after r steps. 
Because of approximation error in modeling, one 
can’t obtain a perfect performance as the 
magnitude of the input signal increases. In addition, 
some modeling error may occur during training 
procedure such as sticking in local minima. In such 
a case, the above control law doesn’t perform 
properly.   
  
3.3 Discrete Sliding-Mode Control  
 
NARMA-L2 model can be represented by 
considering the modeling error as  

( ) 0 0( ) , ( ) ( ) ( )
( , )

y t r F W u f W g W u k
R W u

′+ = = +

+
         (16) 

where R  is the bounded modeling error. In 
addition, let 0f̂  and 0ĝ  be the estimation of 0f  
and 0g , respectively, which satisfy the following 
bounds 

1
0 0 0 0 0

ˆ ˆandff f g g gβ β−− ≤ ∆ ≤ ≤                   (17) 

When the internal dynamics is stable, according to 
Equation (2), the (16) can be represented in state-
space form as 
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           (18) 

The problem of tracking an r-dimensional vector 
)]1(),...,1(),([ +−− rkykyky  can in effect be 

replaced by a first order stabilization problem in s, 
which is defined as [8] 

1 1( ) ( ) ( 1) ( 1)
( ) ( ) ( )

r

d

s k e k e k e k r
e k y k y k

λ λ −= + ⋅ − + + − +
= −

      (19) 

Hence, the tracking problem is treated as a 
stabilization problem with the following simplified 
first order dynamic system 0)( =∆ ks . By defining a 
Lyapunov function as 

2( ) ( )V k s k=                                                        (20) 
The condition for asymptotically stability is 

( ) ( ) ( 1) 0V k V k V k∆ = − − <                                 (21) 
when s is a smooth function. Here, we assume V∆  
be represented as 

( )( ) ( ) ( 1) ( ) ( ) ( ) 0V k s k s k s k s k s k∆ = − − = ∆ ⋅ <  (22) 
Moreover, in order to simplify the computations, 
we replace stability condition in Equation (22) 
with a more conservative equation  

( )( ) ( ) ( 1) ( )V k s k s k s k sη∆ = − − < −                 (23) 
 
Proposition: Let the control law be defined as 
follows: 

( ) 0

0 0 0

ˆ( )
sgn sgn( )

ˆ ˆ ˆSL FL
y t r fk ku u s s

g g g
+ −

= − = −   (24) 

Then, the closed-loop system is stable, provided 
that k is large enough. In other words, we propose 
a law that assures the stability of the system in the 
presence of model approximation error R. 
 

Proof: Let define the sliding surface s as follow: 
( )

( )
( ) ( ) ( 1) ( ) ( )

( 1) ( 1)
d

d

s k e k e k y k y k

y k y k

λ

λ

= + − = − +

− − −
          (25) 

Then, according to (22) we can write 
( ) ( ) ( 1) ( 1) ( 2)
( ) ( ) ( 1) ( 1) ( 2)d

s k e k e k e k
y k y k e k e k

λ λ
λ λ

∆ = + − − + − =
− + − − + −

          (26) 

Now, using (16), yields 
0 0( ) ( 2) ( )

( 1) ( 1) ( 2)
ds k f g u k R y k

e k e kλ λ
∆ = + − + −

+ − − + −
                   (27) 

In the above derivation, for the sake of equation 
simplicity, we have assumed that the relative 
degree of the system described by Equation (16) is 
r=2. But, the proof of the proposition can be 
extended to any desired rank of the system. 

Figure 1: MLP structure to identify NARMA-L2 models



Now, by substituting from Equation (24) we have 
1 1

0 0 0 0 0 0
1

0 0

ˆˆ ˆ( ) ( ) ( 1) ( )
ˆ sgn( ) ( 1) ( 1) ( 2)

ds k f g g f g g y k
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To satisfy the stability condition in Equation (22)  
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Since ( )0 0 0 0
ˆ ˆf f f f= + − , then 
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    (30) 
by using Equations (12) and (17) in (30) it yields 

( ) ˆ1 d f Rk f yβ β η β≥ − − + ∆ + + ∆ + Γ             (31) 

 
3.3.1 Chattering Elimination 
 
The drawback of the sliding-mode control is the 
chattering phenomenon. In this paper, we present 
two techniques to eliminate the chattering. 
 
A. filtering 
By employing an appropriate low pass filter, a 
smooth control signal can be generated. In this 
approach, dynamic of low pass filter should be 
considered in designing the sliding-mode 
controller. Suppose the low pass filter has the 
following transfer function 

 
Figure 2: Using a low pass filter to eliminate chattering 
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with αγ += 1 . According to Figure 2 we can 
write  

( ) ( 1) ( )y k y k u kα γ′ ′ ′= − − +                                (33)  
The output y can be written as NARMA model in 
terms of input u' as 
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where  
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γ γ
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Since αγ += 1 , then 
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∆ = − − − − − 

 
 

If the changes in the input signal are small, then by 
using the Taylor expansion of Equation (34) we 
have 

) GnkukunkykyFrty ∆++−+−=+ )1(),..,(),1(),...,(()( 1

where  
1 1

0 1 HOT
( ) ( 1)G n
F F

u k u k n −

∂ ∂
∆ = ∆ + + ∆ +

∂ ∂ − +
 

and ( ) ( )1 , ( ) , ( )F W u k F W u k′= . Hence, the effect 
of the low pass filter can be considered as an 
additional model error. As a result, the new 
condition for stability can be achieved by 
substituting R R G∆ → ∆ + ∆   in Equation (31). 
 
B. Combination of feedback linearization and 
sliding-mode 
To remove the chattering phenomenon without 
loosing the advantages of sliding-mode control, a 
fuzzy combination of feedback linearization and 
sliding-mode has been given in [9]. In this 
approach, a fuzzy system decides between the 
feedback linearization and sliding-mode control 
methods. That is, a continuous fuzzy switch makes 
smooth changes between these two controllers 
with the following fuzzy IF-THEN rules: 

Rule 1: IF s is P, THEN 
0ĝ

kuu FLP −=  

Rule 2: IF s is Z, THEN FLZ uu =  

Rule 3: IF s is N, THEN 
0ĝ

kuu FLN +=  

where P, Z and N are fuzzy sets defined on input 
fuzzy variable s, witch is applied to fuzzy 
controller. Also NZP uuu ,, are the outputs of the 
fuzzy inference engine for the above three fuzzy 
rules. In the above fuzzy rules, there exist at least 
one non-zero degree of membership [ ]0 ( ) 0,1sµ ∈  
for each rule as depicted in Figure 3. Appling the 
weighted sum defuzzification method, the overall 
output of the fuzzy controller can be written as 

)()()(
)()()(

sss
usususu

NZP

NNZZPP

µµµ
µµµ

++
++

=  

The sufficient condition for stability of the system 
under this control law has been given in [10]. To 
guarantee the stability, system under each of two 
feedback linearization and sliding control law 
should be stable; in addition to that, the control 
signal u should remain bounded for any input s. 
 

 
Figure 3: Membership function of fuzzy variable s 



4 Simulation Results 
 
A second-order plant is chosen for simulation 
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It is clear that by one iteration on y(t), the control 
signal will appear in the output. Therefore, the 
relative degree of this system is one. Hence, this 
plant can be represented as a NARMA model as 
follows 

( ))(),(),(),()( 1tutu1tytyF1ky −−=+   
and NARMA-L2 model as 

( )
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0

0

( 1) ( ), ( 1), ( 1)

( ), ( 1), ( 1) ( )

y k f y t y t u t

g y t y t u t u k

+ = − − +

− −
 

An MLP neural network, as in Figure 1, has been 
used for identification. This MLP contains 9 and 3 
neurons in the first and second hidden layers, 
respectively. When 0.4u ≤ the modeling error is 
small and the feedback linearization control law 
exhibits good performance. This is shown in 
Figures 4 and 5. As the magnitude of the control 
signal increases, the ability of feedback 
linearization control to achieving an acceptable 
performance decreases. Figures 6 and 7 show this 
situation for 1u ≤ . To correct the tracking quality, 
the sliding-mode control law is employed. The 
results are presented in Figures 8 and 9. As it was 
expected, the chattering phenomenon appears. To 
eliminate the chattering, two approaches, presented 
in this paper, are used together to achieve a good 
performance. Figures 10 and 11 show the results. 
As these Figures show, the system has a very good 
performance although the approximation error is 
relatively large.  
 
5 Conclusion 
 
An indirect combined controller is proposed for 
non-affine nonlinear system based on NARMA-L2 
approximate input-output model of plant. Due to 
the approximation error, the conventional feedback 
linearization can't guarantee the perfect 
performance. To overcome this problem, a hybrid 
control law has been proposed, witch assures the 
stability and good performance of the close-loop 
system in the presence of approximation error. The 
stability of the system has been proved as a 
proposition in this paper. 
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Figure 4: Tracking of system with feedback 
linearization control when 0.4u ≤  

Figure 5: Control signal (feedback linearization)

Figure 7: Control signal (feedback linearization)

Figure 6: Tracking of system with feedback 
 linearization control and 1u ≤  
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Figure 8: Tracking of system with sliding 
 control and 1u ≤  

Figure 10: Tracking of the system with 
combined control law and filtering  1u ≤  

Figure 11: Control signal of the proposed 
controller 

Figure 9: Control signal of the sliding-mode 
control  


