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Abstract

This paper presents a direct adaptive output feedback control 
design method for uncertain non-affine nonlinear systems, 
which does not rely on state estimation. The approach is 
applicable to systems with unknown, but bounded dimensions 
and with known relative degree. A neural network is employed 
to approximate and adaptively make ineffective unknown plant 
nonlinearities.   An adaptive control law for the weights in the 
hidden layer and the output layer of the neural network are also 
established so that the entire closed-loop system is stable in the 
sense of Lyapunov. Moreover, the tracking error is guaranteed 
to be uniformly and asymptotically stable, rather than 
uniformly ultimately bounded with the aid of an additional 
adaptive robustifying control part. The proposed control 
algorithm is relatively strightforward and no restrictive 
conditions on the design parameters for achieving the systems 
stability are required. The efficiency of the proposed scheme is 
shown through the simulation of a non-affine nonlinear system 
with unmodelled dynamics.

1   Introduction

Control system design for complex nonlinear systems has been 
widely studied in the last decade. Many remarkable results in 
this area have been reported, including feedback linearization 
techniques [1, 2] and backstepping design [3] for systems with 
unmatched uncertainties [4]. Most of these researches are 
conducted for certain systems in affine form. Several adaptive 
schemes have been developed in dealing with the problem of 
parametric uncertainties [5, 6] for affine nonlinear systems. 
However, there are some practical systems such as chemical 
reactions [7] in which the input variables cannot be expressed 
in an affine form.  So using classic approaches such as feedback 
linearisation, the control of such systems may be difficult or
impossible.

In recent years, several methods based on Neural Networks 
(NNs) have been presented to control nonlinear systems by
removing the unknown nonlinear part of the system [7]-[13].
Most of these approaches have been proposed based upon the 
state feedback [9, 10] or output feedback [11]-[13]. In 
particular, because of approximation errors inherent in NNs,
when the number of neurons is limited, most of these methods
can guarantee only uniformly ultimately bounded (UUB)
stability. To remove this obstacle and to compensate the 
approximation errors, a method has been widely used in which 
an extra robustifying input part is considered [8, 14]. In this 
method the gain is computed from the suitable information
about an upper bound of the system uncertainties, which is 
normally unavailable and there is no direct method for 
obtaining it. Therefore, these methods yield an overestimate
resulting from a conservative design. To overcome this
problem, an adaptive robustifying control part based on states 
of system is introduced in [15]. In this approach, the system 
states should be available or be estimated, and the dimension of 
system must also be known a priori.

In this paper an adaptive robustifying control part which 
guarantees asymptotic stability of tracking error, is proposed. 
The overall proposed control law is based on output feedback 
control methods and estimates of the states are not required. 
Therefore, the plant dimension is not necessary to be known a 
priori and for designing the controller only the relative degree 
of system is required. Since the control law comprises of the 
stabiliser, adaptive and robustifying parts, the closed-loop 
system is robust against unmodelled dynamics and 
asymptotically stabilises the system.  In addition, the method is 
applicable to a class of nonlinear systems with any relative 
degree. The method is based on strictly positive realness (SPR) 
condition of the closed-loop error dynamics and the 
Kalman-Yakobovich’s lemma as well as NN techniques.

This paper is organised as follows: Section 2 describes the
class of nonlinear systems to be controlled and the problem of
the tracking error. The structure and approximation properties 
of the neural networks are addressed in Section 3. In Section 4, 
the stability of the closed-loop system is proved.  An example 
which illustrates the effectiveness of the proposed controller is 
presented in Section 5.  Conclusions are given in Section 6.
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2   Problem statement

Consider the nonlinear system 
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where n

x Rx   is the state vector on  the compact set 

x as an operating region, uu R  is the input on  the 

compact set u , and y R is the output. The mapping 
1: n nf R R   is an unknown smooth vector field and 

: nh R R  is a smooth and known real function. Assume that 
the relative degree of the system (1) is r n . Under this 
assumption, there is a diffeomorphism transformation

1
1( ) [ , ] ( ), , , , ( ), , ( )r

f f n rx z h x L h L h x x  
      

which transforms the system (1) into the following normal form 
with a new coordinate   1 1, ,..., , ,...,r r nz z z       [1]
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Assumption 1: The zero dynamics of system (2),  0,w 

is exponentially stable. Moreover, the desired trajectory and 
its derivates are bounded such that the internal dynamics 
remain bounded.
Assumption 2: Assume that  1 , , 0ub b z u u    .  This 

condition implies that the smooth function ub is strictly either 

positive or negative on the compact set 

      , , , , ;x uU z u z x x u     

From (2), the input-output relation of  the system is
                    ( )

1( , , ) ( , )ry b z u b x u                      (3)

Define the pseudo-control 

                               ˆ( , )b y u                     (4)

where ˆ( , )b y u is the available approximation of  ( , )b ux .  One

may consider ˆ( , )b y u cu , where c is a constant.  However, it

should be appropriately selected based upon the criteria which 
are presented in Section 3. Hence, the modelling error is

                      ˆ( , ) ( , ) ( , )u b y u b u  x x                 (5)

Using (3), (4) and (5) ( ) ˆ( , ) ( , ) ( , )ry b y u x u x u         
Now, selecting the pseudo-control  as

                          ( )r
d L ad Ry u u u                                   (6)

where ( )r
dy  is the r-derivative of the desired output dy , Lu

stabilises the closed-loop system, adu is the adaptive part and it

cancels out the modelling error ( , )u x  whilst the control part

Ru is proposed to achieve robust asymptotic stability. The 

robust control Ru could be continuous or discontinuous. In 

particular, one may consider a sliding mode control since it is 
robust in the presence of uncertainties.

Define de y y  . Then the closed-loop error dynamics of

the system is
               ( ) ( , )r

L ad Re u x u u u                                    (7)

         

2.1 SPR of the error dynamic

In this section, a strictly positive realness (SPR) property of 
closed-loop error dynamic is studied. Assume that Lu is a

suitable filter with the following structure
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and filtered error signal e is defined as 
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where ad ( )G s is chosen so that ad (0) 0G  .  Substituting (8) 

and (9) in (7), the closed-loop tracking error is

            ad R( ) ( ) ( , ) ( )e s G s x u u u s                   (10)

where
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By applying Routh-Hurwitz stability criterion to (11), one can
conclude that a necessary condition for stability of the 
closed-loop system (11) is that the degree of LN (and 

hence LD ) should be at least 1r  . Therefore, k is defined as

               deg( ) deg( ) 1L Lk D N r                     (12)

In addition, to simplify the design procedure, adD  and LD  are 

selected such that
                        addeg( ) deg( )LD D                            (13)

Hence, the relative degree of  ( )G s is

                         addeg( )k r N                                     (14)               

where addeg( )N k .  Therefore, r  . If 1   then G(s) is 

not a SPR function [16].  So there exits a suitable filter ( )T s

with the following characteristic 
                     addeg( ) deg( ) 1N T k r                        (15)

and the new filtered error dynamic is

             1( ) ( ) ( ) ( , ) ( )ad sle s G s T s x u u u s                 (16)

By selecting adN and ( )T s  appropriately, the auxiliary 

transfer function
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has the SPR property. Therefore, the state space model of 
closed-loop error dynamic (16) can be represented as
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T
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Due to the SPR property of ( )G s  and according to the 

Kalman-Yakobovich lemma, for any positive-definite matrix 
Q , there is a positive-definite symmetric  matrix P  such that 

T
cl clA P PA Q                           (19)

and
                                        cl clPb c                                   (20)



3 Neural network-based approximation

The modelling error ( ( ), ( ))x t u t  affects the pseudo-control 

 . So the adaptive part ad ( )u t of the control   is designed to 

cancel the unknown modelling approximation error ( , ).u x

So, there exists a fixed point problem as  

 ( ) ( ), ( ( ), , )ad ad L Ru t x t L u t u u  where L  is a function, 

which can be directly  found from (4) and (6). The conditions 
that guarantee the existence and uniqueness are [13] 
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ˆ 2 0
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In the following lemma, it is shown that the error ( , )x u  can 

be approximated by a neural network. Moreover, it is proved 
that if any non-affine system satisfies conditions (21) then there 
is unnecessary to use ad ( )u t as a feedback signal.

Lemma 1: If conditions (21) are satisfied then the modelling 
error ( , )x u can be approximated by a single hidden layer 

Multilayer Perceptron (MLP) as   T Tw V  where w is a 

vector containing synaptic weights of the output layer, V is a 
matrix containing the weights for the hidden layer, 
respectively, and  is the input vector, which is equal to

 ad1, , ,
T

y u u  where
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           (22)

in which ( )
dc R .r

du u u y   
Proof: Under the observability condition of the system (1), it 

is shown that the system states can be expressed as a function of 
y and  as

                                     ,x F y                                     (23)

where 1 1[ ( ), ( ), ..., ( ( 1))] ,  T
d dt t T t T n r n n         [17].

In addition, (4) indicates that the control u is a function of y
and  .  Thus

                      ( , ) ( , , ) ( , )x u x y H y                    (24)

In it is proved that adaptive part adu is a function of states and 

u [16]. So

                                   ad ( , )u I x u                                    (25)

From (23) and (25) 
                         ad ad ad( ) ( , ( ), , )u t I y u t u u                          (26)
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Then according to the implicit function theorem, the adaptive 
part of control law 
                       ad ad( ) ( , , )u t K y u u                     (27)                      
is obtained. Finally, by substituting (27) in (24) yields
                            ad( , , ) ( , , )x y M y u u                        

On the other hand, any sufficiently smooth function can be 
approximated on a compact set with an arbitrarily bounded

error by a suitable large MLP [18]. Therefore, on the compact 
set   a set of ideal weights *w and *V exist such that

                              * *, , ( )T Tx y w V                      (28)

where M  and M is an appropriate positive number. The 

ideal constant weights *w and *V are defined as
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in which   , ,w w vF F
w V w M V M    and M , wM

and vM are positive numbers, and 
F

 denotes the Frobenius 

norm.  However, in practice, the weights may be different from 
ideal ones, so an approximation error occurs, which can be
calculated as in [8]
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and m mR  is the derivative of   with respect to the input 
signal of all neuron in the hidden layer of NN.      

4 Stability performance

In this section the asymptotic stability of the error system is 
proved. Based on the results of Section 3, the system (18) is
first converted into a new form. Then a lemma is presented 
which is needed for proof of the system stability. By 
substituting (30) in (18), the closed-loop error dynamic can be 
represented as
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Then the closed-loop error dynamic is 
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cle c                                                                                    (32)

When w and V are time-variant signals, the transfer function 

of the system (32) is not commutable. To remove this obstacle,
the error parts are defined as
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where

                      3 4,w VF F
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with positive numbers 3 4andc c .   Substituting (33) in (32)
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In order to show that the system is asymptotically stable via the 
proposed control, the following lemma is needed.

Lemma 2: It can be shown that the following inequality holds
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Assume that the highest frequency of signal s is s  and 1( )T s

is a low pass filter.  Then
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Theorem: Consider the discontinuous control
                                 sgnRu g e                                     (38)

and select the adaptation laws for NN weights, and the gain of 
the robust part    as
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Then the closed-loop tracking error is asymptotically stable and 
the weights of the neural network remain bounded.

Proof: Consider the Lyapunov function 
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where P  is the unique positive-definite symmetric solution  
(19) and *    . Assume that *w  and *V are ideal 

constant weights defined as in (29). Then from (31) 
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Using adaptation laws (39) the time-derivative of W satisfied 
the following inequality
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       (42)

Since W is a positive function and 0W  , so ,  ,  wV  

and  are bounded. In addition, from (29), *V and *w are 

bounded, therefore, according to (31), W  and w must remain 
bounded. Moreover, by integrating (42) 

            
2

00

2
( ) ( )( ) t tdt W t W tt

q




                 (43)

Since, the right-hand side of (43) is bounded, then the 
Barbalet’s lemma yields

                                    
2

lim 0
t




                                             (44)

Since   T
cle  c ξ ,

                          lim ( ) 0
t

e t


                                (45)

According to the final value theorem and using (9), it yields



0 0
lim ( ) lim ( ) ( ) 0ad
s s

s e s s G s e s
 
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Since ad (0) 0G  one can conclude

0
lim ( ) 0
s
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

so
                                    lim ( ) 0

t
e t


                                             (46)

Remark: When a discontinuous control is applied to a system,
a phenomenon, the so-called chattering appears.  Many 
methods have been proposed to reduce chattering including 
continuous approximation of the discontinuous control. A 
continuous approximation of sgn( )e  in (38) is the saturation 

function 

                     
 sgn    if  

sat
    otherwise

e e
e e





 
 



 

                                (47)

Alternatively, one may consider the smoothing function 

 tanh e

 or

e

e 



 where  0   and 0 1   as an 

approximation of sgn( )e .

Figure 1 shows the block diagram of the system with the 

proposed control.  Note that if there is a finite time
st  such that 

0e  for all 
st t , the system trajectories move on the sliding 

surface 0e   and along this surface tending to an equilibrium 
point [19]. The control (38) guarantees the robustness of the 
method in the presence of disturbances or unmodelled 
dynamics provided that the gain is selected  sufficiently large.

5 Example

The performance of the proposed controller is illustrated by 
considering the following non-affine nonlinear system
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2 2 1 2 1 2

3 1 3

1 3
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x x

x x x x x x u

x x x

y x x
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

 
  







The relative degree of the system with output y is   2r  . In 
fact, the zero dynamic of the system is 3 30.8x x   which is 

asymptotically stable.  Therefore, in practice it is assumed that
the system is modelled  as a second order nonlinear plant model, 
whose realization consists of states x1 and x2 (state x3 is omitted)
the output is modelled as 1y x , Hence, the system without

unmodelled dynamic can be presented as

1 2

2 3
2 2 1 2 1 2

1
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x x

x x x x x x u

y x
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



The second order compensator 
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is selected to stabilize the linear second order system Ly u . 

Now, based on the assumptions on adN  and adD in Section 2, 

the following filtered error signal e

  
2 6 6

50
10 20

ad

ad

N s s

D s s

 


 

is considered. It is desired that the above filter has high 
bandwidths. Finally, ( ) 0.5 1T s s   is selected based on SPR

property of G . 
The MLP has 20 neurons in hidden layer with tangent 

hyperbolic activation functions. The weights are initialised 
randomly with small numbers. The input to the NN for 

1 4n n  is

[1, ( ), ( ), ( 2 ), ( 3 ), ( ), ( ), ( )]T
add d d d dy t y t T y t T y t T u t u t T u t T       

with  0.01sec.dT   .    Also, the training constants are selected 

as 0.8, 0.9w v      . And finally, to avoid chattering,

 tanh 0.4e is used instead of  sgn e . 
Simulation results have been depicted in Figures 2-7. First, 

the controlled system performance is evaluated without the 
unmodelled mode dynamics. Figure 2, compares the system 
response with three different control laws. First, simulations 
have been performed without the adaptive part adu and without 

the robustifying part Ru . Then, only the adaptive part has been 
added. And finally, both the adaptive part and the robustifying 
part have been used.

Figure 2, clearly demonstrates that the system response is 
very oscillatory and almost unstable. Then, for the second case, 
by using the adaptive part, these oscillations are eliminated 
(Figure 2). Moreover, by adding the robustifying part the 
desired tracking with asymptotic stability is achieved. Figures 
3 and 4 show the action of the controllers and the norms of 
weights, respectively.  They also show that the weights remain 
bounded.

Next, the effect of the unmodelled dynamics is examined and 
the simulation results are shown in Figure 5. In this case, the 
response without the adaptive part is unstable, whereas by 
using the additional control parts, the good tracking is 

( )r
dy

 1ˆ ,b y

N.N
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L

N

D
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x f x u
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



TDL

TDL

Figure 1:  Block diagram of the proposed control method.



achieved. In addition, these results demonstrate that the 
proposed control law can compensate the effect of unmodelled
dynamics appropriately.

6 Conclusions

In this paper, a direct adaptive output feedback control method 
has been developed for uncertain non-affine nonlinear systems 
that do not rely on state estimation. Moreover, it has been 
shown that the use of an additional robustifying part of the 
control guarantees the uniform asymptotic stability of the 
tracking error system. Without this control part, only the
uniform ultimately boundedness of the tracking error system is
demonstrated. The proposed control algorithm is relatively 
simple and requires no restrictive conditions on the design 
constants for the stability. The efficiency of the proposed 
scheme has been shown using the simulation of a nonlinear 
system with unmodelled dynamics. The simulation results 
showed the effectiveness of the proposed control method as 
compared to linear and linear-adaptive controllers.
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Figure 2: Tracking performance for  the system without 
unmodelled dynamics.
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Figure 3: The action of controllers for the system without 
unmodelled dynamics.
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Figure 4: Norm of the weights for the system without 
unmodelled dynamics.
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Figure 5: Tracking performance for the system with  
unmodelled dynamics.
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Figure 7: Norm of the weights for the system with unmodelled
dynamics.
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Figure 6: The action of controllers for system with unmodelled 
dynamics.
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