
 

 

  
Abstract— In this paper, a fuzzy controller is designed for 

stabilization of the Lorenz chaotic equations. A simple Mamdani 
inference method is used for this purpose. This method is very 
simple and applicable for complex chaotic systems and it can be 
implemented easily. The stability of close loop system is 
investigated by the Lyapunov stabilization criterion. A Lyapunov 
function is introduced and the global stability is proven. Finally, the 
effectiveness of this method is illustrated by simulation results and 
it is shown that the performance of the system is improved. 
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I. INTRODUCTION 
N recent years, intelligent methods such as neural networks 
and fuzzy logic have been used to identify and control 

chaotic systems [1].. To achieve desired responses, intelligent 
systems based on robustness, accuracy and adaptation are 
useful and can be appropriate for chaos control [2-4]. Wang 
applied the fuzzy logic control based on adaptive control 
method for chaotic systems [5]. In 1997, Tanaka, Ikeda and 
Wang present a LMI-base fuzzy control for chaotic system 
[6]. Also they controlled the chaotic behaviors by the Sugeno-
type fuzzy system [7]. Chen in 2000 proposed a fuzzy 
modeling method for control and prediction of uncertain 
chaotic system [8]. Li et. al. in 2001 introduced Takagi-
Sugeno(TS) fuzzy system to make a chaotic system [9]. Park 
et. Al. in 2002 presented an adaptive fuzzy control scheme 
based on well-known Takagi–Sugeno (T–S) fuzzy models for 
the MIMO plants [2]. Feng  and Chen in 2005 used  T-S 
model of discrete-time for henon map [10]. In these 
references the methods are complicated and often difficult to 
implementation. Therefore, in this paper, we use a well-
known and simple method that can be embedded easily in 
chaotic systems. 
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Determination of an accurate mathematical model for 
chaotic systems is often difficult [11]. So, model-free control 
methods are useful for these systems [11]. In this paper, a 
fuzzy method is used to control chaotic systems such as the 
Lorenz equation. For this purpose, the Lorenz equation is 
introduced first. Then a fuzzy controller based on the 
Mamdani inference approach is designed. This controller is 
based on IF-THEN rules obtained from experimental data. By 
applying this method to the Lorenz chaotic system in the next 
step, simulation results of the proposed method are compared 
with results of [7]. Simulation results show that the stability 
and performance of this method will be better than the 
Sugeno fuzzy control method. These important results will be 
achieved by a minimum control effort. 

This paper is organized in seven sections. In section 2, the 
Lorenz equation will be introduced. In section 3, the 
Mamdani fuzzy control method will be studied. The 
Lyapunov stability criterion will be investigated in section 4. 
Simulation results will be shown and compared with the 
Sugeno method in fifth and sixth sections. Finally, conclusion 
remarks will be shown in the last section.  

II. LORENZ EQUATION 
In chaotic systems, any small variation of initial conditions 

can result nonlinear and non-deterministic performance of the 
system. Lorenz equation is one of the most popular chaotic 
systems [12]. 

The Lorenz equations are as following:  
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where x1(t), x2(t) and x3(t) are state variables, y is output and 
a, b and c are parameters of the system. 

Figure 1 shows the performance of state variables of 
Lorenz equation with a=10,  b=8/3 and c=28. 

It can be seen that the Lorenz chaotic output signal is 
completely random and aperiodic, when the input is step 
signal. 
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III. STABILIZATION OF THE LORENZ EQUATIONS BY FUZZY 
LOGIC APPROACH 

A. The Mamdani Fuzzy Control Method 
The Mamdani inference method is used to stabilize the 

Lorenz chaotic equation. This technique is based on 
observation of experimental data and IF-THEN rules. It is 
completed by selection of triangular fuzzifier, centers mean 
defuzzifier and the Mamdani product as the inference engine. 

Figure 2 shows the block diagram of close loop system.  
By the step response of closed loop system and analyzing 

experimental observations, required rules for input and output 
of the fuzzy system are obtained, which is shown as table I. 

The variation ranges of 1x  and 1x&  are [–30, +30] and [-
3000, +3000], respectively. These ranges are resulted from 

the variation range of 1x  in figure 1. Input and output 
membership functions are shown in figure 3 and 4. 

 

TABLE I 
THE MAMDANI FUZZY RULES 

 
1x 

1x& 
 

NB NM NS ZE PS PM PB 

NB NB NM NM NM NS NS ZE 

NM NM NM NS NS ZE PS PS 

NS NM NM NS NS ZE PS PS 

ZE NM NS NS ZE PS PS PM 

PS NS NS ZE PS PS PM PM 

PM NS ZE PS PS PM PM PB 

PS ZE PS PS PM PM PB PB 

 
NB = Negative Big,  
NM = Negative Medium,  
NS = Negative Small,  
ZE = Zero Equal,  
PS = Positive Small,  
PM = Positive Medium,  
PB = Positive Bog 

 

 
Fig. 2 the fuzzy control of the Lorenz equation 

 
 

Fig. 3 input membership functions of the Mamdani fuzzy controller 

 

 
 

Fig. 4 Output membership functions of the Mamdani fuzzy controller 
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Fig 1 the state variables of the Lorenz chaotic equations with a=10, 
b=8/3, c=28. 



 

 

IV. STABILITY ANALYSIS 
Now, it is proven that the Lorenz system with fuzzy 

controller is globally asymptotic stable. For this purpose, the 
coordination of the system is changed as the following:  
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Where )x(and,)x( 321 φφφ  are nonlinear and smooth 

functions. 
Now the following functions are defined: 
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Then the Lyapunov function is defined as 
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 By substitution equation (3) in derivation of the Lyapunov 
function: 
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00 =≤ VandV && if and only if 01 =)t(x~ .  
So, the system is globally asymptotic stable, if and only if 

)()(,)( 321 xandxx γγγ  defined in equation (3), are 
smooth functions. 

Now, we claim that )x(and)x(,)x( 321 γγγ  are smooth. 
The stability analysis is completed analysis by proving our 
claim. 

)x(and)x( 32 γγ  are smooth, because the states of the 
system are smooth. So, this is sufficient to show that u(x) is a 
smooth function. u(x) should be defined according to the 
Mamdani method as follows: 
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Where )x(Aiµ  is membership function. 
According to simulation result u(x) has the maximum 

change when ][xy 1001001 −∈= and ][dxxx 10101 −∈= ∫ , 

so u(x) can be approximated as the following: 
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Where ∫== dxxxandxy 11  that 3211 xandx,dxx,x ∫  

are smooth. So, )x(1γ is also smooth 

V. SIMULATION RESULTS 
Figure 5 and 6 show the simulation results of the Lorenz 

equations by Mamdani fuzzy controller. 
 

 

 
 

Fig. 5 the state variables of system with Mamdani fuzzy controller 
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Fig. 6 The control signal 



 

 

VI. COMPARING MAMDANI FUZZY CONTROLLER WITH SUGENO 
FUZZY CONTROLLER 

Table II compares the Mamdani fuzzy controller that 
proposed in this paper with the Sugeno fuzzy controller in [7]  

 

VII. CONCLUSION 
In this paper, the Lorenz equations were stabilized by the 

fuzzy controller. A simple and effective Mamdani fuzzy 
controller is designed and applied to the Lorenz equations. 
The stability of the proposed method was proven and it was 
shown that the Lorenz equation is globally stable by this 
controller. Simulation results were shown that by applying 
this controller, performance of the system has been improved 
and the resulted system is stable.  
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TABLE II 
COMPARING MAMDANI AND SUGENO CONTROL METHODS 
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