
 
 

 

Abstract- In this paper, a new method has been proposed to 
control a two-dimensional inverted pendulum. First, the system 
of a two-dimensional inverted pendulum is divided into two 
subsystems using decentralized control theory. Then, using 
decoupling method, each subsystem is decoupled into two 
surfaces for applying sliding-mode control. Next, this controller 
has been used to train two neuro-fuzzy ANFIS (Adaptive-
Network-Based Fuzzy Inference System) networks. Due to the 
high accuracy of the ANFIS networks, these two networks can 
learn the controlling abilities of the teacher. Each trained 
network controls its own subsystem as a local controller. The 
trained networks not only have the properties of their teacher, 
but also due to the parallel processing property of the ANFIS 
networks, they response much faster than their teacher. 
Moreover, the neuro-fuzzy controller doesn’t need any model 
of the plant or its parameters. Simulation results show a high 
performance for the proposed method as compared to the 
existing methods. 

Keywords- two-dimensional inverted pendulum, 
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I. INTRODUCTION 
One-Dimensional inverted pendulum is a nonlinear 

problem, which has been considered by many researchers 
[1]-[4], most of which have used linearization theory in their 
control schemes. In general, the control of this system by 
classical methods is a difficult task [5]-[9]. This is mainly 
because this is a nonlinear problem with two degrees of 
freedom (i.e. the angle of the inverted pendulum and the 
position of the cart), and only one control input. Moreover, 
when the deviation angle of the inverted pendulum becomes 
large, then the system shows highly nonlinear behavior. 
Hence, the linearization theory encounters difficulties. When 
this problem is extended into a two-dimensional inverted 
pendulum (i.e. an inverted pendulum, whose maneuver is 
not restricted in a plane, and can move in three-dimensional 
space, and also its cart does not move along one axis, but in 
x-y plane), then the system becomes a very complicated 
MIMO (Multiple-Input Multiple-Output) nonlinear system. 
The control of this system, which is a more realistic model 
of a launched missile, is the subject of this paper. 

In order to solve this problem, if the multivariable classical 
control methods are used, then the model of the system must 
be linearized. But, because of the highly nonlinear behavior 
of the two-dimensional inverted pendulum in large deviation 
angles, these methods can control this system only for small 
deviation angles. On the other hand, the use of nonlinear 

classical methods for a MIMO system with differential 
equation of order 8 can be extremely difficult. In contrast, 
the decentralized control theory has opened a horizon for 
controlling of complicated and nonlinear systems [10]. 
According to this theory, a complicated problem will be 
divided into a few simpler subsystems considering some 
conditions and each subsystem is controlled separately. 
Therefore, instead of solving one complicated problem, a 
few simpler sub problems will be solved. The use of this 
method simplifies the control of a two-dimensional inverted 
pendulum. In the proposed method, in this paper, each 
subsystem is further decoupled into two-sub subsystems. 
Then, with defining two sliding surface, which are related to 
each other, the sliding-mode control will be applied to it 
[11]. In this way, the problem of controlling a system of 
order 8 can be accomplished with sliding-mode controllers 
for systems of order 2. Next, the designed controller, which 
has a very good performance to control the system, will be 
used as a teacher. One ANFIS (Adaptive-Network-Based 
Fuzzy Inference System) network will be considered for 
each local controller. These ANFIS networks will be trained 
with the teacher. After the training phase, each ANFIS 
network controls its own subsystem. The advantages of this 
method are: 1- high accuracy in modeling, 2- fast response 
due to the parallel structure of the ANFIS networks, 3- 
robustness against external disturbances, 4- robustness 
against on-line changes in the parameters of the system, 5- 
ability to control the inverted pendulum with large initial 
deviation angles. Moreover, due to the nature of the ANFIS 
networks, the controllers can be adaptive. In this way, the 
parameters of the controllers can be changed with an on-line 
scheme, in order to compensate the changes in the 
parameters of the system. The rest of this paper is organized 
as follows. In the next section, the model of the two-
dimensional inverted pendulum will be given. In section III, 
the decentralized control theory and its application to the 
two-dimensional inverted pendulum will be briefly 
explained. The design of the controller will be brought in 
section V, followed by the design of two ANFIS networks in 
section IV. Section VI shows the simulation results. The 
conclusion is given in section VII. 

II. THE MODEL OF TWO-DIMENSIONAL INVERTED PENDULUM 
The system of a two-dimensional inverted pendulum 

consists of an inverted pendulum connected to a cart, and 
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can move in the three dimensional space. That is, it can 
deviate from vertical direction (i.e. parallel to the z axis) 
towards both x and y directions. The cart also can move in 
x-y plane as in Fig.1. The dynamic equations of this system 
are as follows [12]: 
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Fig. 1.  The schematic diagram of a two-dimensional inverted pendulum 
 
Where h is a 18× vector, influenced by the state vector of 

the system x and the input vector u, and G is a 88× matrix, 
which is a function of the state vector x.  If the deviation 
angle of the inverted pendulum from the z-axis is assumed 
to be γ, then α and β are the projections of γ on the x-z and 
y-z planes, respectively. α& and β&  are the corresponding 
angular velocities. Also, x and y are the coordinates of the 
position of the cart in x-y plane, and x& and y&  are the 
velocities of the cart along the x-axis and the y-axis, 
respectively. xF and yF are the applied forces to the cart 
along x and y-axis, respectively. After some matrix 
manipulations, the dynamic of the system can be rewritten as 
follows: 
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Where ( ) ( ),, xx ijij bf  and ( )( )2,1 and2,1 == jivij x  are 

nonlinear functions of the state variables [18]. 

III. THE DECENTRALIZED CONTROL THEORY 
What are mostly common in control theory are the 

centralized control methods: dada are received from the 
plant and all of them are sent to the controller. Then, the 
decision is made by the central control and the appropriate 
commands are sent to the plant. Here, the controller 
considers the plant as a whole. But in complicated and/or 
distributed systems the design of the controllers can 
encounter difficulties. One of the methods to control these 
kinds of systems is the decentralized control scheme. The 
main idea in this theory is the distribution of tasks. That is, 
the process under control is appropriately divided into 
several sub processes. Then, the controllers are designed 
locally and the processing is made in a decentralized 
fashion. In other words, the local controllers generate the 
control commands. Obviously, because of the interactions 
between subsystems, the control commands, which are 
applied to the corresponding subsystems, affects other 
subsystems as well. Therefore, a third kind of disturbance, in 
addition to two well-known disturbances (i.e. the 
disturbances due to external signals and the disturbances due 
to the unmodelled dynamics), which is the effects of all 
subsystems on every subsystem, is defined [10]. 
 

A. The Use of The Decentralized Control Theory in Two-
Dimensional Inverted Pendulum 
If the dynamic equations of a two-dimensional inverted 

pendulum are linearized around 0=x , then its state 
equations become diagonal. In other words, in the process of 
linearization, the decoupling occurs along the x and y-axis 
[12]. That is, the system of the two-dimensional inverted 
pendulum can be considered as two separated subsystems. It 
should be mentioned that the linearized model of the two-
dimensional inverted pendulum has not been used in this 
paper. The goal is only to conclude from the above 
comments that it is appropriate to consider the x-axis as one 
subsystem and the y-axis as the other because the 
interactions between these two subsystems are relatively 
small. Moreover, because of the similarities between the x-
axis and the y-axis dynamics, one needs only to design the 
controller for one axis. As a result, the MIMO system of 
order 8 is converted into two SIMO (Single-Input Multiple-
Output) subsystems of order 4. Therefore, one local 
controller needs to be designed for every subsystem, such 
that the disturbances of the third kind are also considered. 
The closer the pendulum gets to the operating point ( 0=x ), 
the smaller the magnitude of the third kind of disturbance 
(i.e. at 0=x  this disturbance is equal to zero and at the 
deviation angle near 90 degrees it has its maximum value). 
Therefore, (2) can be written as: 
                                           21 xx =&                                    (3) 
                          ( ) ( ) ( )tdFbfx x 1111112 ++= xx&                (4) 
                                           43 xx =&                                    (5) 

 



 
 

 

                    ( ) ( ) ( )tdFbfx x 1212124 ++= xx&                      (6) 
                                       65 xx =&                                        (7) 
                    ( ) ( ) ( )tdFbfx y 2121216 ++= xx&                       (8) 

                                       87 xx =&                                         (9) 
                   ( ) ( ) ( )tdFbfx y 2222228 ++= xx&                    (10) 

In these equations ( ) ( )2,1and2,1 == jitdij  are the 
disturbances of the third kind. Later it will be shown how to 
convert each subsystem of order 4 into two sub-subsystems 
of order 2 using the decoupled sliding-mode method. The 
result is a simple design procedure and a controller with 
good performance. 
 

IV. DESIGN OF THE CONTROLLER 
The goal of the control is to bring the inverted pendulum 

to the vertical position (in the z-axis direction) while the cart 
is brought to the origin of the coordinates. The state 
equations (3)-(6) are for the subsystem of the x-axis and (7)-
(10) are for the subsystem of the y-axis. Hence, there are 
two subsystems of order 4, which are not in canonical form 
and must be controlled independently. 
 

A. The Decoupled Sliding-Mode Control Method 
Consider the following four state equations, similar to the 

subsystems of the two-dimensional inverted pendulum: 
                                         21 xx =&                                     (11) 
                        ( ) ( ) ( )tdubfx 1112 ++= xx&                       (12) 
                                         43 xx =&                                     (13) 
                       ( ) ( ) ( )tdubfx 2224 ++= xx&                      (14) 

Where [ ]Txxxx 4321=x  is the state vector, and 
( )x1f , ( )x2f , ( )x1b , and ( )x2b  are nonlinear functions 

equal to ( )xijf  and ( )xijb  ( )2,1and2,1 == ji , respectively. 

Also, u is control input, and ( )td1  and ( )td2 are disturbances 
of the third kind. It is assumed that these disturbances have 
an upper limit: ( ) ( ) ( ) ( )tDtdtDtd 2211 , ≤≤ . Now, two sliding 
surfaces will be defined as 
                    43222111 , xxcsxxcs +=+=                    (15) 

According to the sliding-mode control theory, the control 
laws can be defined as follows [13]: 
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Clearly, if 1uu =  in (12) and (14), only states 1x  and 2x  
along with the hyper surface 1s  will converge to zero. On 
the other hand, if 2uu = , only states 3x  and 4x  along with 

the hyper surface 2s  will converge to zero. In other words, 
the sliding-mode controller is able to control either the 
inverted pendulum or the cart, while the goal is the 
simultaneous control of both the inverted pendulum and the 
cart. One method might be as follows: converting the above 
fourth order system into a canonical form and then applying 
the sliding-mode control theory. But, this conversion has 
some conditions [14]. Moreover, its computations are 
complicated and laborious. Using the decoupled sliding-
mode control scheme [11], one can employ the sliding-mode 
theory without converting the system into canonical form. 
The main idea of the decoupled sliding-mode controller is as 
follows: The existing fourth order system is divided into two 
subsystems A and B of order two. Subsystem A consists of 
the state variables 1x  and 2x , and the sliding surface 1s ; 
subsystem B consists of the state variables 3x  and 4x , and 
the sliding surface 2s . The main goal of the controller is to 
guide the state variables of subsystem A to the surface 

01 =s  such that 1x  and 2x  approach exponentially to zero. 
The secondary goal is the same thing for the state variables 
of subsystem B and the corresponding sliding surface 

02 =s . Since the main goal is to bring subsystem A into 
stable conditions, the information of subsystem B is 
considered as secondary data. These secondary data must be 
transferred via a mechanism to the primary data. For this 
reason, a dummy variable z is defined, which transfers the 
secondary data to the primary data. Therefore, the sliding 
surface 1s  changes into ( ) 21111 xzxcs +−= . Now with this 
modified 1s , the main goal changes from 01 =x  and 

02 =x  into 01 == zx  and 02 =x , such that z is a function 
of 2s . Hence, the main goal and the secondary goal are 
linked together through the dummy variable z, and both of 
these goals will be controlled simultaneously. The dummy 
variable z can be found as follows: 

According to the above statements 
                                ( ) 21111 xzxcs +−=                          (18) 
and 2s  can be define as before 
                                     4322 xxcs +=                              (19) 

The control input is the sliding-mode control of subsystem 
A (16). Since in sliding-mode control theory it is assumed 
that 1uu =  to control the entire system, the boundedness of 

1x  can be assured with 10 << uz  and uzz ≤ . In other 

words, the maximum absolute value of 1x  is always 

bounded.  Here, uz  is the upper limit of z . Therefore, z 
can be defined as follows: 
               ( ) 10/sat 2 <<= uuz zzsz ϕ                 (20) 

Therefore, z is a decaying signal, since uz  is less than one. 
The control action is accomplished as follows:  The main 
object of  (16) is to make 1x  and 2x  equal to zero according 



 
 

 

to the sliding-mode control theory. However, when 02 ≠s , 
then 0≠z  in (18). This causes (16) to apply an input such 
that z is decreased. When z is decreased, 2s  will be 
decreased too. Moreover, when 02 →s , then 03 →x  and 

04 →x , which satisfies the secondary goal as well. In 
summary, with the introduction of dummy variable z in 1s , 
the system is decoupled into two sliding surfaces. Then, 
with appropriate changes in 1u , 1s  and 2s  will converge 
simultaneously to zero. The same procedure will be 
performed for the y-direction. The overall structure of the 
proposed control system is shown in Fig. 2. 

 

 
Fig. 2.  The control system structure 

 
V. DESIGN OF THE NEURO-FUZZY CONTROLLER 

In this section, two ANFIS networks will be designed to 
control the two-dimensional inverted pendulum. To do this, 
the ANFIS networks will be trained in order to capture the 
behavior of the local controllers, defined in section V. 

 

A. Inputs to the ANFIS Networks 
The inputs to each network are the states of the subsystem, 

which the local controller has to control it. Therefore, using 
7392 input-output pairs obtained from the decoupled sliding 
controller, the ANFIS networks will be trained. The 
subtractive clustering method yields 42 centers of clusters. 
{ }4321 xxxx  and { }8765 xxxx are the inputs to 
the x-direction and y-direction ANFIS networks, 
respectively. Fig. 3 shows the structure of the controller.  

Since the subsystems have similar structure, the trained 
ANFIS network for one direction can be used for the other 
direction as well. Therefore, it suffices to train one ANFIS 
network with 4 inputs and 1 output, using the data obtained 
from the controller of the previous section. 

B.  Defining Fuzzy Rules 
In this paper the subtractive clustering method has been 

used to define fuzzy rules [15]. The subtractive clustering 
method is a scheme for extraction and classification of fuzzy 
rules. The advantages of this method, as compared to similar 
methods, are [16]: 1) there is no need to determine the 
number of clusters beforehand, 2) the complexity of the 
computations increases linearly with the dimension of the 
problem, which yields a higher computational speed, 3) the 
ability to consider each data, not each section, as the 
candidate for the center of the cluster, 4) extraction of fewer 
rules along with higher performance. The range of influence, 
the squash factor, the accept rate and the reject rate are as 
follows: 

15.0,5.0,25.1/,5.0 ==== εεbaa rrr            (21) 
 

  
Fig. 3. The decentralized structure of the control system using two ANFIS 

networks 
                                                               

C. Structure of the ANFIS networks 
The ANFIS networks are constructed using 42 fuzzy rules 

of the first order, obtained from the subtractive clustering 
method. Each input variable has 42 membership functions. 
The singleton fuzzifier, center average defuzzifier and 
product inference engine have been employed in the ANFIS 
networks. The membership functions of the input variables 
are gaussian. Total number of network nodes is 427. 

 

D. Training of the ANFIS Networks 
Each ANFIS network has 336 trainable nonlinear 

parameters as the center and width of the membership 
functions, and 210 trainable linear parameters as the 
coefficients in the linear combination of the fuzzy rules in 
the tally part of the fuzzy system. Therefore, there are 546 
adjustable parameters in every ANFIS network. A hybrid 
method has been used to train these networks [17]. The 
average of the error after 206 epochs of training is 0.059661. 
The required time for this training was 72 hours. 



 
 

 

Fig. 4. Simulation results  
Fig. 5. Applied external disturbance to each axis 
 

VI. SIMULATION RESULTS 
The simulation of the proposed control method is 

performed on a two-dimensional inverted pendulum with the 
following specifications: 
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Each local controller controls its corresponding subsystem. 
While the inverted pendulum comes to the vertical position, 
the cart reaches the origin of the coordinates. Fig. 4 shows 
the simulation results. The ANFIS controllers are able to 
control the system as good as their teachers. Despite the 
large initial values for angles the proposed controller is able 
to bring the pendulum to the vertical position. Also, the 
responses have acceptable overshoot and undershoot. 

The run time of the simulations is very fast, even in the 
MATLAB environment. Due to the parallel processing 
nature of the ANFIS networks, the proposed controller is 
able to control the system 12 times faster than the teacher 
(the sliding-mode controller, defined in section IV, takes 62 
seconds to perform 15 seconds of simulations on the same 
computer whereas the neuro-fuzzy controller performs the 
same simulation in 5 seconds). Hence, one can use the 
proposed method as an on-line controller, without any need 
to write the required codes in low level programming 
languages. Also, this method has some advantages over the 
method, which has been proposed by the authors of this 
paper in [18]. In Table I result of these two methods has 
been compared when the initial condition is the same. 

TABLE I 

Decentralized Controller A B C D 

Neuro-Fuzzy using ANFIS Networks 86 7 14 5 

Adaptive Robust with Fuzzy Modeling 35 0.6 2 42 
A: Maximum controllable angle deviation (degree) 
B: Maximum controllable cart distance from origin (meter) 
C: Time of approaching to balance point (second)  
D: Necessary time for simulation of 15 seconds (second) 

 

A. Applying External Disturbances 
The above simulations are repeated with external 

disturbances applied to both x  and y  directions. This 
disturbance, which is shown in Fig. 5, has relatively large 
amplitude and has been created using several sinusoidal 
waveforms with different frequency and amplitude along 
with random coefficients. The same initial values have been  

0 5 10 15 20 25 30 35
-40

-20

0

20

40

ex
te

rn
al

 d
is

tu
rb

an
ce

1(
N

)

 

0 2 4 6 8 10 12 14 16 18
-10

0

10

20

30

40

50

60

70

80

90

t im e(s ec .)

α
 (

de
g.

)

0 2 4 6 8 10 12 14 16 18
-10

0

10

20

30

40

50

60

70

80

tim e(sec .)

β
 (

de
g.

)

 

0 2 4 6 8 10 12 14 16 18
-5

0

5

10

15

20

25

tim e(sec .)

x 
(m

)

 

0 2 4 6 8 10 12 14 16 18
-5

0

5

10

15

20

25

30

time(sec.)

y 
(m

)

  



 
 

 

Fig. 6. Simulation results in the presence of external disturbances 

considered for α  and β as before. The simulation results are 
shown in Fig. 6. As it is clear from the graphs, the proposed 
controller can bring the inverted pendulum in the vertical 
position and hold it there, despite large amount of external 
disturbances and large initial value for angles. 
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VII. CONCLUSION 
A new method, based on synthesis of the decentralized 

control theory and the decoupled sliding-mode method, was 
presented for controlling two-dimensional inverted 
pendulum. First, the dynamic equation of the system with 
order 8 was divided into two sub systems with order 4. 
Second, two sliding surfaces have been assigned to each sub 
system, and the sliding-mode control was performed using 
an intermediate variable. Next, this controller has been used 
to train two neuro-fuzzy ANFIS networks. Due to the high 
accuracy of the ANFIS networks, these two networks can 
learn the controlling properties of the teacher. That is, the 
ability to control the inverted pendulum with the large initial 
deviation angles. Moreover, due to the parallel structure of 
the ANFIS networks, the proposed controller responds much 
faster than its teacher (i.e. the decoupled sliding-mode 
controller). Also, the simulation results show that the 
performed control method is robust against external 
disturbances as well. In addition, the neuro-fuzzy structure 
of the ANFIS networks makes it needful from the system 
parameters, which yields a more robust controller against the 

changes in the parameters of the system. It has been showed 
in [18] by the authors that the proposed controller is robust 
against on-line changes of the parameters of the Inverted 
Pendulum, as a model of a launched missile, such as mass 
(to model the consumption of the fuel), gravity acceleration 
(as the missile is distancing from the surface of the earth) 
and sudden mass changes (as some sections of the missile 
will be separated). Also, since the neuro-fuzzy systems are 
trainable, the controller can be adaptive as well. Moreover, 
due to the fuzzy nature of ANFIS networks, the use of the 
expert knowledge in control strategy is possible. Although, 
the proposed method in this paper was used to control two-
dimensional inverted pendulum, however it can be used to 
control a large class of nonlinear dynamic systems. 
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