
 
 
 
 

Keywords –Nonlinear systems; Adaptive control; Neural networks; Output feedback; Strictly positive realness 
 
 
 

Saeed  M. HOSEINI1, Mohammad  FARROKHI2 and Ali . J. KOSHKOUEI3 
 
 
 

ADAPTIVE OUTPUT FEEDBACK CONTROL OF NONLINEAR 
 NON-MINIMUM PHASE SYSTEMS USING NEURAL NETWORKS 

            
 
 
  This paper presents an adaptive output feedback control method for nonlinear non-minimum phase systems. The  
  control is designed based on neural networks and robust control techniques. The inputs to the neural network are 
  the tapped delayed values of the system input-output signals. The adaptation law for the neural network weights  
  is obtained using the Lyapunov’s direct method. In addition, since the controller depends on the output signal, the 
  controller is always accessible and the state estimation is not required. The effectiveness of the proposed  
  scheme will be shown through simulations for a nonlinear non-minimum phase system.  
 
 
1.  INTRODUCTION 
 
Output feedback control of nonlinear systems is a challenging problem in control theory. This 
problem has been an active research area for many years. Several researchers have recently 
proposed fundamental methods in this area. These methods include using geometric techniques [7]; 
adaptive observers and output feedback controllers for system in output feedback form[13]; high 
gain observers [10]; backstepping algorithms for systems with parametric uncertainty [11]; and 
combining backstepping with small gain theorem [8]. The aim of all these research efforts is to 
develop systematic design methods for controlling systems in the presence of structured 
uncertainties in the form of parameters variations and unstructured uncertainties such as unmodeled 
dynamics.  Recently, some results for output feedback control based on Neural Networks (NNs) 
have been presented, which can be applied to a wide class of systems with structured and 
unstructured uncertainties. Remarkably, these results include, methods for uncertain systems based 
on high gain observer [1, 2, 15], and using adaptive error observer [5].  
In these methods, it is assumed that the zero dynamics of the system is globally asymptotically 
stable or input-to-state stable (ISS). Isidori has presented a solution for robust semi-global 
stabilization based on auxiliary constructions and with relaxed conditions [6]. Karagiannis et al. 
have proposed a method for global output feedback stabilization by designing an observer and using 
classical backstepping and small-gain techniques [9]. In this method, they have considered the 
stabilization problem for systems where nonlinearities depend only on the output. A neuro-adaptive 
output feedback control for non-minimum phase nonlinear systems using a high order error 
observer is proposed in [4]. 
An adaptive control method based on output feedback for minimum phase non-affine nonlinear 
systems has been proposed in [3]. The main advantages of this method are the semi-global 
asymptotic stability of the closed-loop system and its robustness to model uncertainties  
This paper presents an adaptive output feedback control method for stabilization of observable and 
stabilizable nonlinear non-minimum phase systems. In this method, the linear model of a system is 
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first derived. This model represents the non-minimum phase zeros of the nonlinear system with 
desired accuracy. In fact, there is a conic sector bound on the modelling error of non-minimum 
phase zeros. Then a linear controller is designed to satisfy the performance requirements in the 
absence of the modelling errors. Next, the linear controller is augmented with a neuro-adaptive 
element and a robustifying term, which are used to cancel out the modelling uncertainties. The NN 
operates over a tapped delay line of memory units, comprised of the system input/output signals. 
Moreover, the adaptation law for the NN weights depends only on the output tracking error with the aid 
of strictly positive realness (SPR) of the augmented tracking error dynamic. 

This paper is organized as follows: Section 2 describes the class of nonlinear systems to be 
controlled and defines the problem of tracking error. The controller design procedure and 
approximation properties of the NN are addressed in section 3. In Section 4, the stability of the 
closed-loop system is analytically proved. An example, which illustrates the effectiveness of the 
proposed controller, is presented in Section 5. Conclusions are given in section 6. 
 
 
2.  PROBLEM STATEMENT 
 
Consider the nonlinear SISO system  
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where r is the relative degree, n rRη
−∈Ω ⊂η  is the state vector associated with the internal 

dynamics, [ ]1, , ,T r
r zz z R= ∈Ω ⊂z " ηΩ and zΩ  are the compact sets of operating regions, and 

u R∈  and y R∈ are the input and the output of the system, respectively. The mappings 
1: nf R R+ →  and : n n rR R −→v are partially known and Lipschitz continuous functions with 

initial conditions ( ), , 0 0f =0 0  and ( ), =v 0 0 0 . Note that the stability assumption on the system 
zero dynamics is not required. 
 

Assumption 1. Assume that ( ), , 0uf f u u= ∂ ∂ ≠z η . This condition implies that the smooth 
function uf  is strictly either positive or negative on the compact set  

( ){ }, , , , .zU u u Rη= ∈Ω ∈Ω ∈z η z η  
It is also assumed that the system output ( )y t  is measurable and it is desired the output tracks a 
reference signal dy  with a bounded error trajectory. 

 
 

3.  CONTROLLER DESIGN 
 
3.1. CONSTRUCTION OF ERROR DYNAMIC 
 
Using Taylor expansion, the system (1) around its equilibrium at the origin can be represented as 
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where the control signal in (1) is introduced as  
                                                      L ad Ru u u u= − −                                                                          (3) 



in which Lu , adu  and Ru  are the linear, the  adaptive and the robustifying terms, respectively. The 
adaptive term is considered to compensate the unknown term ( ), ,u∆ z η . Moreover, m, n, F, G, are 
coefficient matrices with appropriate dimensions, and ( , )η∆ z η  denotes the zero dynamic modelling 
error. 
Assumption 2. The modelling error of the internal dynamics is bounded with a conic sector bound as  
                                                    1 2 3( , ) c c c≤ + +η∆ z η z η                                                          (4) 
where ic (i=1,2,3) are known positive constants. 
 
The linear model of the system (2) is  
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Assumption 3. There is a tracking linear controller   for the linear dynamic (5), which satisfies the 
performance requirements. 
 
This linear controller can be represented in the state-space form as 
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The linear model (5), when regulated by (6), defines a closed-loop reference model as 
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where  [ , , ]T T T T
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clx denotes the state vector of controller (6) when applied to linear model (5). In addition, the 
nonlinear system (2) under regulation of (6) can be written as 
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The objective is to design adu and Ru  such that the output y tracks the reference signal dy .The error 
dynamics for the output signal le y y= − is derived in this section and in Section 3.2. The 
ultimately boundedness of the error signal is concluded using the Lyapunov’s direct method. This 
ensures that y tracks dy with an error bound. 



Using (7) and (8) and with the following definition of error vector 
                          ,l= −E x x                                                                        (9) 

error dynamics can be represented as 

         
( ) η

.
cl ad R

cl

A u u

e

= + − ∆ + −

=

E E g H∆
c E

�
                                              (10) 

Using (9), the upper bound of the modelling error, defined in (4), can be represented as  

( )1 1( , ) lc α≤ + +η∆ z η E x                                                  (11) 

Since the closed-loop reference model in (7) is stable, it is always possible to find a positive 
constant 4c  that satisfies 4l c≤x . Then, substituting in (11) yields 

    0 1 0 1 1 4( , ) , c cα α α α≤ + = +η∆ z η E                                         (12) 
 

3.2. CONSTRUCTION OF SPR ERROR DYNAMIC 
 
In this section, a strictly positive realness property of the closed-loop error dynamic is studied. As it 
will be shown in the next section, in order for the NN adaptation law to be dependent only on the 
system output, the transfer function of the closed-loop error dynamic should be Strictly Positive 
Real (SPR). Because of the non-minimum phase properties of the system, the closed-loop error 
dynamic (10) cannot be SPR [14]. To achieve an SPR error dynamic, an augmented error is 
introduce as  
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where .ag cl a= +c c c The Kalman-Yakobuvich lemma is used to design ac .  
SPR of the augmented error dynamic assures the existence of a matrix 0T= >P P , which satisfies  

                         T
cl cl =+ −A P PA Q                                                                 (14) 

and 
                              T

ag =c Pg                                                                           (15) 
where 0T= >Q Q . Using (14) and (15) and substituting clA  and g  from (7) and (8) into (14) and 
(15), agc  is determined.  
Thus, the SPR augmented error can be derived as 

     ( )( ) ( )ag a ad R ae e G s u u s= + − ∆ + + ηH ∆                                           (16) 
where 

               ( ) 1( )a a clG s s −= −c I A g                                                         (17) 
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Assumption 4. It is assumed that the smallest eigenvalue mQ of Q  in (14) satisfies the condition  

1 14 2 2m aQ µα α> + +H PH , where 0µ >  is the robustifying control gain and  1α  is a positive 
number. 
 
3.3.1. NEURAL NETWORK-BASED APPROXIMATION 
 
The adaptive part adu of the control law   is designed to cancel out the modelling error 

( , , ) ( , , )L ad Ru u u u∆ = ∆ − −z η z η .  Hence, there exists a fixed-point problem as 



         ( ) ( , , )ad L ad Ru t u u u= ∆ − −z η                                                  (19) 
The following assumption provides conditions that guarantee the existence and uniqueness of a 
solution for adu . 
 
Assumption 5. The map adu → ∆  is a contraction over the entire input domain. This means, the 
following inequality should be satisfied 
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Substituting (1), (2) and (3) into (20), yields         
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Condition (21) is equivalent to the following two conditions 
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In the following lemma, it is shown that the modelling error ( , , )u∆ z η  can be approximated on 
compact set by a linear parameterized neural network, based on input-output data. Moreover, it is 
proved that if any non-affine system satisfies conditions (22), then it is unnecessary to use ( )adu t  as 
an input signal to the NN. Therefore, it is possible to employ the static NN rather than the recurrent 
NN to approximate ( )adu t . 
 
Lemma: If conditions (22) are satisfied, then, modelling error ( , , )u∆ z η  can be approximated by a 
Radial Bases Function Network (RBFN) as ( )Tw Φ ζ , where 1mR +∈w  is a vector containing 
synaptic weights and ( ) mR⋅ ∈Φ is a vector of nonlinear functions as 

( )2 2( ) exp ,i ci iφ σ= − −ζ ζ ζ ( ) 1iφ ≤ζ , and NR∈ζ  is the input vector, which is equal to 

[ ]1 ,T
adα=ζ y u u where 
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in which ad L Ru u u u uα = + = − and Td is the sampling time. 

Proof: Under the observability condition of the system (1), it has been shown in [12] that the 
continuous-time dynamic ( , , )u∆ z η  can be approximated using the delayed inputs and outputs as 

              ( ) 1( , , ) F ,u ε∆ = +z η y u ,                                                       (24) 
where 

[ ]1 1( ) ( ) ( ( 1)) ,d du t u t T u t T n r n n= − − − − ≥u "  
and 1 1Mε ε≤ , in which 1Mε  is directly proportional to the sampling time interval dT . Hence, 1ε can 
be ignored by selecting dT  sufficiently small. Moreover, assumption 5 guarantees the existence and 
uniqueness of a solution for adu  satisfying the following equation 

( , , , ) ( , , ) ( ) 0ad adM u u u u t= ∆ − =z η z η                                               (25) 



Differentiating M with respect to adu , similar to (21), yields 

                      ( ) 1( , , , ) ( , , ) 1ad ad
ad ad ad

fM u u u u
u u u b u
∂ ∂ ∂∆ ∂

= ∆ − = − = −
∂ ∂ ∂ ∂

z η z η                             (26) 

which is nonzero by Assumption 1. Substituting (24) into (25) implies 

                                     ( )1( , ) ( ) , , ( ) ( ) 0ad ad ad adu u t F u t u tα∆ − = + − =z,η y u u                               (27) 

where ( ) ( )1 , , ( ) ,ad adF u t Fα + =y u u y u . 
Thus, from (26) and according to the implicit function theorem, there exists a unique solution for 

adu  as 
          ad ( ) ( , , )adu t α= Γ y u u                                                              (28) 

From (28) and  (27)   
                        ( , ) ( )u∆ = Γz,η ζ                                                                 (29) 

On the other hand, any sufficiently smooth function can be approximated on a compact set with an 
arbitrarily bounded error by a suitable large RBFN. Therefore, on the compact set UΩ ⊂ , there 
exists a set of ideal weights *w  such that 

         *( , ) ( )Tu δ∆ = +z,η w Φ ζ                                                        (30) 
where and Mδ ε≤ , in which Mε depends on the network architecture. The ideal constant weights 

*w  is defined as 
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where { }w ww w MΩ = ≤ , in which wM  is a positive constant. However, in practice, the weights 
of neural network may be different from the ideal weights. Hence, an approximation error occurs, 
which satisfies the following equality: 
                                      *( , ) ( ) ( ) ( )TT

adu , u δ ε− ∆ = − − = +z η w Φ ζ w Φ ζ wΦ ζ�                               (32) 
where  

                             *,M =ε ε≤ −w w w�                                                                 (33) 
 

 
4.   STABILITY ANALYSIS 

 
In this section, the ultimately bounded stability of the error dynamics is shown based on the results 
of Section 3.  First, the augmented error dynamics (13) is used for the stability proof. Then, it is 
replaced with the actual error dynamics (16). The control input Ru  is designed to compensate the 
effect of the difference between the augmented error and the actual error. Finally, the uniformly 
ultimately boundedness of the actual error is proved.  

 
Theorem: Consider the control Ru as 

     ,Ru eµ= −                                                                  (34) 

where, 
aG

λµ
∞

=  with 0 1λ< < and  the adaptation law for NN weights as  

    ( )w f R Rfe u uγ κ= − + + +w Φ Φ Φ w�                                              (35) 
Then, the errors E and w�  in the closed-loop system are uniformly ultimately bounded.  
Proof: 

By substituting (32) into (13), the closed-loop augmented error dynamic can be represented as 
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Define the Lyapunov function  

          21 1 ,
2 2

TL
γ
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w
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where matrix P is the unique positive-definite symmetric solution of (14). Moreover, assume that 
*w  is the ideal constant weight defined in (31). Then, from (33) =w w�� � . Using (36), the time-

derivative of L becomes 

( )1 1
2

T T T T
R

w

L uε
γ

= − + + + +−T
ηE QE E Pg w Φ E PH∆ w w� � � �  

From (13), (15) and (16)  
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Now, (32) and (38), yields 
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The adaptation law (35) and upper bounds in (12) and (39) yields 
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From (10), e ≤ E .   Then 
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Select aGµ λ
∞

= with 0 1λ< < , which ensures that ( )2 0aGµ µ
∞

− > . Hence by substituting µ  
and completion of square terms in (40), gives  
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11
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in which K  is 
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To prove the ultimate boundedness, a set of initial conditions for the error variables should be 
defined and it should be ensured that this set comprises of the origin and it is invariant. 

Let  Ω  be a compact set in which NN can approximate the modelling error and rΩ  be the largest 
hypersphere in the error space [ ],=ξ E w� , defined as 

                                                                      { }r rΩ = ≤ξ ξ                                                         (43) 

such that for every  r∈Ωξ  there exists ( ), ,u ∈Ωz η .  From (42) one can imply that L� is negative 
outside the compact set  

{ }rγ γΩ = ∈Ω ≤ξ ξ  

where max( , )E wR Rγ = . Consider the Lyapunov function (37), which can be rewritten as TL = ξ Sξ   
where  
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Let Γ be the maximum value of the Lyapunov function L on the boundary of γΩ ,  2
MS γΓ = , and 

α be its minimum value on the boundary of rΩ : 2
mS rα = , where andM mS S are maximum and 

minimum eigenvalues of S ,  respectively.  Define the sets 
{ }LΓΩ = ≤ Γξ , { }.r Lα αΩ = ∈Ω ≤ξ  

If  αΓ <  or equivalently 
                                                                M mr S S γ>                                                                 (44) 
 
then αΓΩ ⊂ Ω . This ensures that if the initial error (0) α∈Ωξ , then the error trajectory ξ  is 
ultimately bounded with the ultimate bound  γ .                                                                                 
 
Remark 1. Note that according to (42) the bounds on the errors depends on the NN reconstruction 
error ε ,  the  unmatched modelling error η∆  and aG

∞
. Smaller bound on tracking error can be 

achieved by selecting a suitable network with sufficient neurons, and also by selecting mQ  
sufficiently large, without proportionally increasing P, requires the increment of the compensator 
gain in (6). Moreover, for a fixed mQ , the increment of the compensator gain  yields a smaller 

aG
∞

, but unfortunately increasing the compensator gain leads to peaking phenomenon [15]. 
However, the proof of the theorem is valid as long as Assumptions 1-5 and condition (44) hold. 
Remark 2. The stability results are semi-global in the sense that they are local with respect to the 
NN approximation domain Ω . If the NN globally approximates the modelling error over the entire 
space 1nR +  then the global stability is obtained. 
Remark 3. When some of the internal dynamics are exponentially stable, they can be ignored in 
controller design, but their effects should be considered in the stability analysis.  



 
5.  SIMULATION EXAMPLE 
 
The performance of the proposed controller is illustrated by considering the following non-
minimum phase non-affine system 
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The zero dynamics of the system are 
1 1 2

2 2

0.8
3

η η η
η η

= +
 = −

�
�

 

where 1η  and 2η  are the unstable and  exponentially stable states, respectively. Moreover, it is 
assumed that the reference signal and its derivates are defined such that the internal dynamic 2η  is 
input-to-state stable. Hence, in the design procedure, 2η  is neglected. Hence,  linear system can be 
written as 

1

1 1

2
2

z z u
z

y z

η
η η

= − − +
 = +
 =
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and the modelling errors are 
( ) ( ) ( )3 2

1 2, , 0.2 0.1 0.1 , , 0.8 0.2z u z u z u z zη η∆ = + − − ∆ = −ηη η  
Note that Assumption 2 is satisfied 
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The dynamic compensator (6) is an LQG controller based on the linear model, which is designed as 
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To construct the augmented error, the following filter is designed when 10=Q I  
3 2

4 3 2

97.95 31300 103500 92570( )
319.6 1073 1271 529.2a
s s sG s

s s s s
+ + +

=
+ + + +

 

The NN is of RBF type and has five neurons in the hidden layer. The weights are initialised 
randomly with small numbers. The centres of the Gaussian functions ( 1, ,5)ci i =ζ …  are randomly 
selected over the possible values of vector ζ , and variance is 2 1iσ =  for all neurons. The input 
vector to the NN for 1 4n n= >  is 

[1, ( ), ( ), ( 2 ), ( 3 ), ( ), ( ), ( )]T
add d d d dy t y t T y t T y t T u t u t T u t Tα α= − − − − −ξ  

with 10dT = msec. Moreover, the learning rate is selected as 0.2γ =w  and 0.95λ = . The reference 
signal dy  is a square signal, which has been passed through a first order filter with transfer 
function 0.2 /( 0.2)s + .  

Simulation results are presented in Figures 1 and 2. Figure 1 shows the system response when the 
linear controller is applied. It is clear that the system response is not satisfactory, because of the 
nonlinear behaviour of the system. By adding the proposed control terms, the response is improved 
and a relatively suitable tracking performance with bounded error is achieved. Figure 2.a 
demonstrates the internal dynamics, which are stable in the presence of the modelling error. The 
control signals are shown in Figure 2.b. The norm of the weight vector is depicted in Figure 2.c, 
which shows that weights remain bounded. Finally, Figure 2.d demonstrates the approximate 
cancellation of matched modelling error ∆  by adu in the absence of unmatched modelling error η∆ . 
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6.  CONCLUSIONS 
 
A direct adaptive output feedback control method has been proposed for non-minimum phase 
nonlinear systems. The proposed method introduces an augmented error signal, which is strictly 
positive real. Since the control depends on the output signal, the state estimation is not required. It 
has been shown that the tracking error and the NN weights are uniformly ultimately bounded. The 
control design is based on the definitions of some parameters and functions. However, the method 
is not very sensitive to these constants and functions.  
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Fig.2. (a) Internal dynamics; (b) control signals; (c) norm of  
weights; (d) matched modelling error compensation in the 
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