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Abstract: This paper, presents a direct adaptive control design method for uncertain 
nonlinear non-minimum phase systems. First, an appropriate reference signal is designed 
such that the internal dynamic subsystem is input-to-state practical stable. Then an output 
feedback control, which does not rely on the state estimation, is designed such that the 
output of system asymptotically tracks this reference signal. This controller is comprised 
of a dynamic linear controller, an adaptive neural network and a discontinuous 
robustifying term. Stability of the overall system is guaranteed using the small gain 
theorem. The effectiveness of the proposed scheme is shown in simulations using a non-
minimum phase non-affine system.  
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1. INTRODUCTION 

 
Control system design for complex nonlinear 
systems has been widely studied in the last decade. 
Many remarkable results in this area have been 
reported, including feedback linearization techniques 
(Isidori, 1989; Esfandiari and Khalil, 1992), 
backstepping design (Krstic et al., 1995), and 
systems with unmatched uncertainties (Koshkouei et 
al., 2004).  
For uncertain systems, some researchers (Slotine and 
Li, 1991; Levant, 2003, 2005) have developed 
sliding-mode control approaches. In these methods, 
the controller gains are computed using the upper 
bound information on the system uncertainties, 
which is normally unavailable and there is no direct 
method to obtain them. Therefore, these methods can 
yield overestimation resulting from a conservative 
design. To overcome this problem, several adaptive 
schemes have been developed for affine nonlinear 
systems in order to deal with the problem of 
parametric uncertainties (Marino and Tomei, 1995; 
Khalil, 1996). During the last decade, adaptive 
methods based on Neural Networks (NNs) have been 
developed to control uncertain nonlinear systems by 
removing the unknown nonlinear part of the system. 
Most of these approaches have been proposed for 
affine systems (Lewis et al., 1995, 1996) and some 
of them consider non-affine systems based on the 
state feedback (Kim and Calise, 1997) or based on 
the output feedback (Ge et al., 1999; Ge and Zhang, 
2003; Hovakimyan et al., 2002). A common 
assumption in the aforementioned methods is that the 
zero dynamics are globally asymptotically stable or 
input-to-state stable (ISS). Isidori (2000) has 
presented a solution for robust semi-global stabilization 
of non-minimum phase systems based on auxiliary 

constructions. Karagiannis et al. (2005) have proposed a 
method for global output feedback stabilization by 
designing an observer and using classical backstepping 
and small-gain techniques. In this method, they have 
considered the stabilization problem for systems where 
nonlinearities depend only on the output. Chen and 
Chen (2003) have proposed a state feedback method 
for stabilization of uncertain non-minimum phase 
affine systems based on linearization of the internal 
dynamics and using an enhanced radial-basis-
function NN.  
In this paper, a direct adaptive control method is 
developed for non-minimum phase non-affine 
nonlinear systems. The system dynamic is considered 
as two subsystems. The internal dynamics, which is 
called the η -subsystem and other dynamics, referred to 
as the z -subsystem. First, it will be shown that the 
η -subsystem is Input-to-State Practical Stable 
(ISPS) (Jiang, 1999), with input tracking error e , by 
designing a suitable reference signal dy  which is 
applied as the input to the η -subsystem. Then, the 
asymptotic stability of the tracking error dynamic in 
the z -subsystem is guaranteed by using a combined 
output feedback control. This controller contains a 
linear controller, which is augmented with a neuro-
adaptive term and an adaptive robustifying term. 
These adaptive terms are used to cancel out the 
modeling uncertainties. The NN operates over a 
tapped delay line of memory units, comprised of the 
system input/output signals. Moreover, the adaptation 
law for the NN weights depends only on the output 
tracking error with the aid of strictly positive realness 
(SPR) of the tracking error dynamic. In particular, 
because of approximation errors inherent in NNs, 
when the number of neurons is limited or 
initialization of weights are not  suitable, most of 



     

these methods can guarantee only uniformly 
ultimately bounded (UUB) stability. To remove this 
obstacle and to compensate the reconstruction errors, 
a method has been widely used in which an extra 
non-adaptive robustifying input term is considered 
based on information about boundary conditions of 
system uncertainties, which may be unavailable. This 
approach may results in a conservative design (Lewis 
et al.1996, Polycarpou and Mears 1998, Seshagiri 
and Khalil 2000). To overcome this problem, an 
adaptive robustifying control term, which guarantees 
the robustness of the system against approximation 
error of NN and assures the asymptotic stability of 
tracking error, is proposed in this paper.  
The stability of the interconnection of two 
subsystems is proved by using small gain theorem. 

The rest of this paper is organized as follows: 
Section 2 describes the class of nonlinear systems to 
be controlled and the problem of the tracking error. 
In Section 3, ISPS of internal dynamics, with 
tracking error as input, is studied. The controller 
design procedure and approximation properties of the 
NNs are addressed in Section 4. In Section 5, 
stability of the closed-loop system is presented. 
Simulation results are given in Section 6, followed by 
conclusions in Section 7. 

 
2.  PROBLEM STATEMENT 

Consider the nonlinear SISO system in normal form  
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where r is the relative degree, n rRη
−∈Ω ⊂η  is the 

state vector associated with the internal dynamics, 
which can be unstable, i.e. the system may be non-
minimum phase. [ ]1, , ,T r

r zz z R= ∈Ω ⊂z L  ηΩ  and 

zΩ  are the compact sets of operating regions, and 
u R∈  and y R∈ are the input and output of the 
system, respectively. Moreover, 1: nb R R+ →  is an 
uncertain mapping, and F and g are such that they 
represents non-minimum phase zeros of the 
nonlinear system up to a tolerable accuracy. This 
means that the modelling error satisfies a conic 
sector bound as follows. 
 
Assumption 1. The pair ( , )F g is stabilizable and 
the modeling error of internal dynamics ηΔ  is 
bounded with a conic sector bound as  
                   1 0 1 1 2( , )z c c z c≤ + +ηΔ η η               (2) 

such that 1c < g . 
 

Assumption 2. Assume that ( ), , 0ub b u u= ∂ ∂ ≠z η  
is strictly either positive or negative on the compact 
set  

( ){ }, , , , .zU u u Rη= ∈Ω ∈Ω ∈z η z η  
Defining the error signal de y y= − , the system (1) 
can be described as the following subsystems 
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          ( ){η η 1: ,dy e zΣ = + − +η Fη g g Δ η&           (4) 

The controller design procedure is considered in two 
parts. First, ( )d dy y= η  is designed such that η -
subsystem ηΣ  becomes ISPS with input e. Then, a 
combined adaptive output-feedback control law that 
utilizes the available measurement ( ),y t  will be used 
to obtain the system output tracking for the trajectory 

dy , which is assumed to be r-times differentiable.  
 

3. INPUT-TO-STATE STABILITY OF  
THE η -SUBSYSTEM 

Considering the internal subsystem (4), ( )dy η  is 
introduced as 

      ( ) v( )dy = +η kη η                        (5) 
Then, the closed loop form of ηΣ  is 

( ) ( )η 1v( ) ,e z= + − + +η F gk η g g η Δ η&         (6) 
Assumption 1 ensures the existence of gain vector k, 
such that +F gk  is Hurwitz. This in turn assures 
existence of a matrix 1 1 0T= >P P , which satisfies  

( ) ( )1 1 1
T =+ + + −F gk P P F gk Q             (7) 

where 1 1 0T= >Q Q .  
Using (5), the upper bound of the modeling error, 
introduced in (2), can be represented as  

1 0 1 2 1( , ) vz c c eβ β≤ + + +ηΔ η η g       (8) 

where 1 2 1c cβ = + k   and 2 1cβ = g . 
 
Theorem 1: Consider the  control v( )η  as 
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where 1ck β> , 1
T T=w η P  andσ  denotes the 

minimum singular value. Then, the η -subsystem is 
ISPS with input e. 
 

Proof: 
Let define a Lyapunov function as 

1 1
1
2

TL = η Pη                          (10) 

where matrix 1P  is the unique positive-definite 
symmetric solution of (7). Using (6), (8) and (9) the 
time-derivative of 1L  becomes 
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where 1mQ is the minimum eigenvalue of Q1. Using 

1 1( ) ( )σ σ≤ ≤P η w P η   it gives 
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Completion of square terms in (11) yields 
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It is always possible to select ck large enough such that  

                      ( )1 1 1( ) 2 0m cQ kσ β+ − − >P              (13) 



     

Thus 1L  is an ISPS-Lyapunov function for 
subsystem ηΣ , which means this system is ISPS with 
input e (Jiang, 1999). I.e., there exist a continuous 
positive definite function α , a κ -function χ  and a 
constant 0c ≥ such that 

         ( ) ( )1L e cα χ≤ − ∀ ≥ +η η&      (14) 
 

4.  CONTROLLER DESIGN 

4.1. Feedback Linearization  

By introducing the following transformation:  
                      ˆ( , )b y uν =                          (15) 

feedback linearization is performed. In (15), ν  is 
referred to as a pseudo control signal and ˆ( , )b y u  is a 
good approximation of the ( , )b ux . Hence, the 
modeling error is  

            ˆ( , , ) b( , ) b( , , )u y u u∆ = −z η z η            (16) 
Using (3), (15) and (16) the error dynamic can be 
expressed as 

( ) ( ) ( )b̂( , ) ( , , ) ( , , )r r r
d de y y u u y uν= − + ∆ = − + ∆z η z η  

(17)  
This equation represents the dynamic relation of r 
integrations between the pseudo control ν  and the 
system output y, where the modeling error ( , , )u∆ z η  
acts as a disturbance signal. The pseudo control is 
selected to have the form 

                 ( )r
d L ad Ry u u uν = + + −                   (18) 

Now, substituting (18) into (17), the close-loop error 
dynamic can be presented as 

                   ( )( )r
L ad Re u u u= − + ∆ − +               (19) 

where Lu  is the output of a stabilizing linear dynamic 
compensator for the linear dynamics in (19) when 

adu∆ = , and 0Ru = . adu  is the adaptive part of the 
control signal designed to approximately cancel out 

( , , )u∆ z η  whilst the control part Ru  is proposed to 
achieve robust asymptotic stability. The robustifying 
term Ru could be continuous or discontinuous. For 
instance, one may use the sliding-mode control since 
it is robust in the presence of uncertainties.  
Note that the model approximation function ˆ( , )b y u  
should be invertible with respect to u, allowing the 
actual control input to be computed by  

1ˆ ( , )u b y ν−=  
As it was mentioned before, adu is designed to cancel 
the unknown modeling error 1ˆ( , , ( , )),b y ν−∆ z η  
where ∆  depends on ( )adu t through ν . Therefore, 
there exists a fixed-point problem as 

 ( )1 ( )ˆ( ) ( ), ( , )r
ad d L ad Ru t t b y y u u u−= ∆ + + −x  (20) 

The following assumption provides conditions that 
guarantee the existence and the uniqueness of a 
solution for adu . 
 
Assumption 3. The map adu → ∆  is a contraction 
over the entire input domain. This means, the 
following inequality should be satisfied: 

                               1
adu

∂∆ <∂                          (21) 

Substituting (15), (16) and (18) into (21) implies         
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b b u b u
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Inequality (22) is equivalent to the following 
conditions: 

                     
ˆsgn( ) sgn( )

ˆ 2 0

b u b u

b u b u

∂ ∂ = ∂ ∂

∂ ∂ > ∂ ∂ >
               (23) 

Hence, ˆ( , )b y u should be selected such that it 
satisfies conditions (23).  
 
 
4.2. Construction of SPR Error Dynamic 

In this section, the strictly positive realness (SPR) 
property of the closed-loop error dynamic is studied. 
Assume that Lu  is constructed as 

                          L
L

L

Nu e
D

=                             (24) 

and the filtered error signal e%  is defined as 

                         ( ) ad
ad

ad

Ne G s e e
D

= =%                    (25) 

where ( )adG s  is selected such that (0) 0adG ≠ . This 
signal is constructed to ensure a realizable error 
signal, which is used to adapt the NN weights. 
Using (19) and based on the compensators defined in 
(24) and (25), the closed-loop transfer function of the 
system can be written as 

         ( )( )( ) ( ) ( , ) ( )ad Re s G s u u u s= ∆ − +x%       (26) 
where 
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r

ad L L

D NG s
D s D N
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+

                 (27) 

Analyzing the denominator of (27), the Routh-
Hurwitz stability criterion implies that a necessary 
condition for the closed-loop system stability is that 
the polynomial r

L Ls D N+ is complete, i.e. all of the 
polynomial coefficients should be nonzero. 
Therefore, the numerator degree of the compensator 

LN  (and hence LD ) should be at least 1r − .  
In addition, to simplify the design procedure, adD  
and LD  are selected with the same degree. Hence, 
the relative degree of ( )G s is 

deg( ) deg( )L adD r Nρ = + −             (28) 
where deg( ) deg( )ad LN D≤ . Therefore, rρ ≥ . As it 
will be shown in the next section, for the NN 
adaptation rules to be realizable (i.e. dependent only 
on the available data), the transfer function G(s) must 
be strictly positive real (SPR). However, the relative 
degree of G(s) is at least r. When the relative degree 
of G(s) is one, it can be made SPR by a proper 
construction of ( )adN s . If 1ρ > , G(s) cannot be SPR 
(Narendra and Annaswamy 1989). To achieve SPR 
when 1ρ > , a stable low pass filter ( )T s  is 
introduced such that                     

 deg( ) deg( ) deg( ) 1ad LN T D r+ = + −        (29) 
Thus, the new filtered error dynamic is      

 ( )( )1
ad( ) ( ) ( ) ( , ) ( )Re s G s T s u u u s−= ∆ − +x%    (30) 

where ( )G s  can be represented as 
1 2

1 2
1

1

...
( ) ( ) ( )

...

p p
p

p p
p

b s b s b
G s G s T s

s a s a

− −

−

+ + +
= =

+ + +
    (31) 



     

with 2deg( )Lp D r= + . 
Since ( )G s  is a stable transfer function, its zeros 
(roots of adN and ( )T s ) can be easily placed to make 
it SPR. Moreover it is important to note that ( )T s  
should be designed such that the step response of  

1( )T s−  has no overshoot and 1( ) 1T s− ≤ . This is a 
mild constrain that is used in stability proof. Hence, 
the state space model of the closed-loop error 
dynamic (31) can be represented as 

  
( )( )1( ) ( , )cl cl ad R

T
cl

T s u u u

e

ξ ξ

ξ

− = + ∆ − + 
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A b x

c

&
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According to the Kalman-Yakobovich lemma, the 
SPR of ( )G s assures the existence of a matrix 

0T= >P P  which satisfies  
                       T

cl cl =+ −A P PA Q                    (33) 
and 

                                  cl cl=Pb c                          (34) 
where 0T= >Q Q  
 
4.3.  Neural Network-Based Approximation 

It can be shown that under the observability 
condition of system (1), a Multi Layer Perceptron 
(MLP) neural network can approximate the 
modelling error ( , , )u∆ z η , based on the input-output 
data only, as (Lavertsky, et al., 2003) 

           ( ) * *
1, , ( )

T Tu ε∆ = +z η w σ V ζ             (35) 
where 1 Mε ε≤ ( Mε  depends on the network 

architecture), [ ]1 ,T=ζ y u in which 
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( ) mR⋅ ∈σ is a vector function containing  the 
nonlinear functions in the neurons of the hidden 
layer. The ideal constant weights *w  and *V  are  

    ( )
( )

( )* *, : arg min sup
w

T T

, ∈Ω ∈Ω

  = − ∆ 
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where ( ){ }F F
,, M MΩ = ≤ ≤w w Vw V w V , M w  

and M V  are  positive numbers, and 
F

⋅  denotes the 
Forbenius norm. Therefore, it is possible to use a 
MLP to construct adu  and to cancel out ∆  as 

                       ( )T T
adu = w σ V ζ                      (37) 

However, in practice, the weights of the neural 
network may be different from the ideal ones in (36). 
Hence, an approximation error occurs. 
 

Lemma 1: The approximation error, which arises 
from the difference between (35) and the output of 
the NN (37) satisfies the following equality: 

( )( , ) ( )T T T
adu u tδ∆ − = − + +x w σ σV ζ w σV ζ%% & &  (38) 

where  

             0 1 2 F
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,* *

t c c c

= =

δ ≤ + +

− −

w ζ V ζ

w w w V V V

%%

%%
                (39) 

m mR ×∈σ&  is the derivative of σ  with respect to the 
input signals of all neurons in the hidden layer of the 
NN, and ( 0,1, 2)ic i =  are positive known constants. 
 

Proof: See (Hoseini, et al. 2006).  

5. STABILITY ANALYSIS 

In this section, first, asymptotic stability of the 
tracking error is proved, followed by stability of the 
overall system using the small gain theorem.  

Substituting (38) in (32), the closed-loop error 
dynamic can be represented as 

( )( )1 1 ( )T T T T
cl cl f RfT T t uδ− −= + − + + +ξ A ξ b w σ σV ζ w σV ζ& %% & &

where 1 1( ) ( ) ( ) and ( ) ( ) ( )f Rf Rt T s t u t T s u tδ δ− −= = . 
Now, let define andT T= − =ψ σ σV ζ Ψ ζ w σ& & , and 
consider the discontinues control signal  

                        ( )sgnRu g eϕ= − %                     (40) 
where ϕ  is an adaptive gain and g  is a function of 
the NN weights and input vector ξ . 
Using the equality tr( )T T T T=w σV ζ V ζw σ% %& & , the closed-
loop error dynamic results as 
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T s T s
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Here, ,V w% % and ( )sgn eϕ %  are time varying signals. 
Hence, the transfer function operator in (41) is not 
commutable. Now, consider the following error 
terms  

        ( ) ( )
1 1
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T T
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T s T s
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for which the following bounds can be defined 

3 4 5F
, ,c c cϕδ δ δ ϕ≤ ≤ ≤w Vw V%%    (43) 

where 3 4 5, andc c c are positive numbers. Substituting 
(42) into (41) yields 
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)1
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T
cl cl f f

fe T g ϕϕ δ δ δ δ−

= + +

− + + + −w V

ξ A ξ b wψ V Ψ& %%
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where 1 1( ) and ( )f fT s T s− −= =ψ ψ Ψ Ψ . 
In order to show that the error dynamics are 

asymptotically stable in the proposed control method, 
the following lemma is needed. 

 
Lemma 2: The following inequality holds: 

* 1( )f T s gϕδ δ δ δ ϕ −+ + − ≤w V           (45) 

where, ( )( )F
2 1g ϕ= + + + +V w ζ  and *ϕ  is a 

positive constant. 
Proof: Let 1( ) 1T s− ≤ . Using (39) and (43) and after 
omitting some intermediate steps 
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0 1 2

3 4 5F

1 F
2 1

* *
f F

* *

c c c

c c c
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{ }1 0 1 1 2 2 3 4 3 4 5where max , , , , , , , , .c c M c c M c c M c M c c cϕ = +w V w V

Considering that g is a positive signal and low pass 
filter 1( )T s−  is designed such that its step response 
has no overshoot, so 1( )T s g− remains positive. By 
suitable initialization of filter states, it is easy to find 

0 1λ< <  such that  
1( )T s gg λ

−

≤ . Consequently  

           11 ( )f T s gϕ
ϕδ δ δ δ λ

−+ + − ≤w V          (46) 



     

Therefore, *ϕ may be selected as  
* 1ϕϕ λ=                                      

 

Theorem 2: Consider the discontinuous control (44) 
and select the adaptation laws for NN weights and 
the gain of the robustifying termϕ  as 

( )1, ,f fe e e T gϕγ γ ϕ γ −= = =w Vw ψ V Ψ&% % & %&  (47) 
Then, the closed-loop tracking error is 
asymptotically stable and the weights of the NN 
remain bounded.  

Proof: Let define a Lyapunov function as 
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ϕ
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ξ Pξ w V% %%  (48) 

where P is the unique positive-definite symmetric 
solution of (33) and *= −%ϕ ϕ ϕ . Moreover, assume 
that *w  and *V are ideal constant weights defined in 
(36); then, from (39) ,= =− −w w V V&& & %& % . Using (44), 
the time-derivative of L becomes 
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where mQ is the smallest eigenvalue of Q . 
Substituting T

cle = ξ Pb%  from (32) and (34) and 
using Lemma 2 
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Using the adaptation laws in (47), it yields   
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where inf inf ( )adG G j
ω

ω= . 

Since L is a positive function and 0L ≤& , then one 
can conclude that ξ , V% , w%  and %ϕ  are 

bounded. In addition, from (36), *V  and *w are 
bounded; therefore, according to (39), V  and w  
remain bounded. Moreover, by integrating (49)  

  ( )
2

2 0 20

2 ( ) ( ) .( ) t t
m

dt L t L tt
Q

∞

= =∞≤ −∫ ξ       (50) 

Since, the right-hand side of (50) is bounded, then, 
according to the Barbalet’s lemma 
                                2lim 0

t →∞
=ξ                                       

Since T
cle = c ξ% , then lim ( ) 0

t
e t

→∞
=% , and according to 

the final value theorem and using (14), it gives 

ad0 0
lim ( ) lim ( ) ( ) 0
s s

s e s s G s e s
→ →

= =% . 

Since ad (0) 0G ≠ , one can conclude that 

0
lim ( ) 0,
s

s e s
→

=  and hence 

                                lim ( ) 0
t

e t
→∞

=                        (51) 
which concludes the proof.                                        
 

Now, the overall stability of the system is proved in 
the following theorem. 

Theorem 3: Consider the following systems: 
                        ( )

1 1 1 1 2: , ,x x f x x δ∑ =&                  (52) 
                        ( )

2 2 1 1 2: , ,x x f x x δ∑ =&                 (53) 
where 

1x∑  and 
2x∑ are ISS with inputs 2( , )x δ and 

1( , )x δ , respectively. I.e. there exist Lyapunov 
functions 1 1 2 2( ) ( )V x and V x  such that 

2 2 2
1 11 1 11 2 12V k x xγ γ δ< − + +&          (54) 

2 2 2
2 21 2 21 1 22V k x xγ γ δ< − + +&         (55) 

Then, the interconnected systems (52) and (53), 
depicted in Fig. 1., is ISS with input δ  if there exist 
constants 10 1ε< <  and 20 1ε< < such that  

( ) ( )
11 21

1 11 2 21

1
1 1k k

γ γ
ε ε

<
− −

            (56) 

Proof: (Karagiannis, et al., 2005) 
 

Remark: By comparing (12) and (49) with (54) and 
(55) it can be shown that 21 0,γ =  so the small gain 
condition (56) is always satisfied and the 
interconnected systems (3) and (4) are ISPS. 
Moreover, since 0δ = , the overall system is 
uniformly ultimately bounded. Note from (12) that 
smaller bound on error can be achieved by selecting 
large compensator gains k and ck ; but unfortunately 
increasing the compensator gain leads to peaking 
phenomenon (Seshagiri and Khalil, 2000). In 
addition if η∑  is ISS (i.e. 0 0c = ) then the overall 
system is asymptotically stable. 

 
Fig. 1. Block diagram of the interconnected systems (52) and (53). 

 
 

6. SIMULATION EXAMPLE 

The performance of the proposed controller is 
illustrated by considering the following non-
minimum non-affine nonlinear system 

2
1

1 2

2 2
2 2

1 1

1

0.8 0.1

z u

z z

z z u e
z z

y z

η

η η η

−

=


= + + −


= + + +
 =

&

&
&

 

The relative degree of the system with output y is 2. 
In fact, the zero dynamic of the system is 

20.8η η η= +& , which is unstable.  
Note that assumption 2 is satisfied; that is 

2
12

1
( , ) 1 0z ub x u z e

u
−∂

= + >
∂

 , ηη∀ ∈ Ω ∈ Ωzz  

and best available approximation of ( , )b ux  is 
selected as ˆ( , )b y u uν = = . The second order 
compensator 

( )
218 16 12

7
L

L

N s s
D s s

+ +
=

+
 

1x∑  

2x∑  
1x  

2x  

δ  

δ  



     

is selected to stabilize the linear second-order system 
Le u= −&& . Based on the assumptions on adN  and adD  

in Section 4, the following filter is used to construct 
the error signal e%  

( )( )
2

ad

ad

6 650 .
10 20

N s s
D s s

+ +
=

+ +
 

It is desirable that the above filter possess high 
bandwidths. Finally, ( ) 0.5 1T s s= + is selected based 
on SPR property of G . The NN is of MLP type and 
has 20 neurons in one hidden layer with tangent 
hyperbolic activation functions. The weights are 
initialised randomly with small numbers. The input 
to the NN for 1 4n n= ≥  is 

[1, ( ), ( ), ( 2 ), ( 3 ), ( ), ( )]Td d d dy t y t T y t T y t T u t u t T= − − − −ξ

with 10 m secdT = . The NN is trained using the 
adaptation laws, given in (47), with learning rates 

0.1ϕγ γ γ= = =w V . The reference signal dy  is 
designed using k =-1.5  and 4ck = − . And finally, to 
avoid chattering, ( )tanh 0.9e%  is used instead of 

( )sgn e% . Simulation results are presented in Fig. 2. 
The output y, the internal dynamic η  and the control 
signal are shown for three different input laws. Figs. 
2a, 2b and 2c are for the cases where Lu , L adu u+  
and L ad Ru u u+ −  are inputs to the system, 
respectively.  Fig 2a shows that when only the linear 
controller is applied, the system response is very 
oscillatory and unstable because of nonlinear 
behaviour of the system. When the adaptive control 
term adu  is added to the control law, the states of 
system are still oscillatory, but stable (Fig. 2b). By 
adding the robustifying term Ru , all the states of 
system are stable with good transient response and 
small steady-state error. The norms of weights of the 
NN are depicted in Figure 2d. It shows that the 
weights remain bounded. 
 
 

7.  CONCLUSION 
In this paper, a direct adaptive output-feedback control 
method was developed for non-minimum phase 
nonlinear systems. The main feature of the proposed 
method is that it does not need estimation of the 
external dynamics. The system dynamic was considered 
as two subsystems. The η -subsystem, which includes 
the internal dynamics, was stabilized input-to-state 
practical with input e using a suitable reference signal. 
The asymptotic stability of the error dynamic was 
guaranteed by using a combined output-feedback 
control method. The overall system stability was shown 
using the small gain theorem. The effectiveness of the 
proposed scheme was demonstrated using a non-
minimum phase nonlinear system. 
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