
ABSTRACT 

 This paper presents an adaptive output-feedback stabilization 
method for non-affine nonlinear non-minimum phase systems 
using neural networks. The proposed controller is comprised of a 
linear, a neuro-adaptive, and an adaptive robustifying control 
term. The learning rules for adaptive gains, including weights of 
the neural network, are derived using the Lyapunov’s direct 
method.  These adaptation laws employ a suitable output of a 
linear observer of system dynamics that is realizable. The 
effectiveness of the proposed scheme will be shown in 
simulations for the benchmark Translation Oscillator Rotational 
Actuator (TORA) problem.  

1.  INTRODUCTION 

Output-feedback control of nonlinear systems is a challenging 
problem in control theory. This problem has been an active 
research area for many years. Several researchers have recently 
proposed fundamental methods in this area. These methods 
include using geometric techniques [1], adaptive observers and 
output-feedback controllers for system in output-feedback form 
[2], high gain observers [3], and backstepping method for systems 
with parametric uncertainties [4]. The aim of all these research 
efforts is to develop a systematic design method for controlling 
systems in the presence of structured uncertainties in the form of 
parameters variations and unstructured uncertainties such as 
unmodeled dynamics. Recently, some results, based on the output-
feedback control method, using Neural Networks (NNs), have 
been presented. These methods can be applied to a wide class of 
systems with structured and unstructured uncertainties. 
Remarkably, these results include methods for uncertain systems 
based on high-gain observer [5], [6], using adaptive error observer 
[7], and constructing an SPR error signal using the Kalman-
Yakobovic lemma [8]. 
A common assumption in the aforementioned methods is that the 
zero dynamics are globally asymptotically stable or input-to-state 
stable (ISS). In other words, the system is assumed to be minimum 
phase. Recently, some papers have dealt with output-feedback 
stabilization for non-minimum phase systems. Isidori has 
presented a solution for robust semi-global output-feedback 
stabilization of non-minimum phase systems based on auxiliary 
constructions using a high-gain observer [9]. Karagiannis et al. 
have proposed a method for global output-feedback stabilization 
using the classical backstepping and the small-gain techniques 
[10]. A design method for semi-global stabilization of a class of 
non-minimum phase nonlinear systems that can be transformed to 
the global normal form as well as to the form of linear observer 
error dynamic is presented by Ding [11]. These methods can only 

be applied to the systems, where the nonlinearities or the high 
frequency gains depend only on the output of the system. By using 
the approximation ability of NNs, theses restrictions on the model 
of the system are relaxed; the local and non-local stabilization 
methods for uncertain non-minimum phase systems with 
unstructured uncertainties are presented in [12], [13] and [14]. 
However, these methods are based on the state feedback. 
This paper presents an adaptive output-feedback stabilization 
method for observable and stabilizable nonlinear non-affine non-
minimum phase systems. Only an approximate linear model of the 
nonlinear system is required in the design procedure. This linear 
system should present the non-minimum phase zeros of the 
nonlinear system with desired accuracy. In fact, there is a conic 
sector bound on the modelling error of the non-minimum phase 
zeros that is referred to as the unmatched uncertainty. Hence, the 
proposed approach can be applied to uncertain systems, which 
have partially known Lipschitz continuous functions in their 
arguments. Moreover, in this method, the dynamics of the system 
won’t be restricted only to the output of the system. 
In the design proedure, first, a static linear controller is proposed 
that stabilises the linear part of dynamics. Then, this linear 
controller is augmented with a neuro-adaptive term, which is used 
to approximate the matched uncertainty. The NN operates over a 
tapped-delay line of memory units comprised of the system 
input/output signals. Also an adaptive robustifying control term is 
added to the control law to compensate the NN approximation 
error. In addition, a suitable linear observer is design such that the 
combined control law depends only on the output of the system. 

This paper is organized as follows: Section 2 describes the 
class of nonlinear systems to be stabilised and defines the problem 
of stabilization. The procedure for the controller and observer 
design and approximation properties of the NN are addressed in 
Section 3. In Section 4, the stability of the closed-loop system is 
analytically proved. The simulation example, which illustrates the 
effectiveness of the proposed controller, is presented in Section 5. 
Conclusions are given in Section 6. 

 
 

2.  PROBLEM  STATEMENT 
 
Consider the nonlinear SISO system in the following normal form 
with the coordinates [ ]1 1, ..., , , ...,T T

r r n, z z η η+  = z η  [1]: 
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where r is the relative degree, n rRη
−∈ Ω ⊂η  is the state vector 

associated with the internal dynamics, 

[ ]1, , ,T r
r zz z R= ∈ Ω ⊂z L  ηΩ  and zΩ  are the compact 

sets of the operating regions, and u R∈  and y  are the input and 
the output of the system, respectively. The mappings 

1: nf R R+ →  and : n n rR R −→v are partially known 
Lipschitz continuous functions of their arguments with the initial 
conditions ( ), ,0 0f =0 0  and ( ), =v 0 0 0 . Note that the system 
(1) can be non-minimum phase; hence, there is no need for any 
assumption on the stability of the zero dynamics. 
 
Assumption 1. Assume that ( ), , 0uf f u u= ∂ ∂ ≠z η . This 

condition implies that the smooth function uf  is strictly either 
positive or negative on the compact set  

( ){ }, , , , .zU u u Rη= ∈ Ω ∈ Ω ∈z η z η  

It is also assumed that only the output of system y  is measurable. 
The goal is to design a combined controller such that it stabilizes 
all state variables including internal dynamics of the system. The 
various features of the proposed control design scheme are 
presented in the next section. 

3.  CONTROLLER  DESIGN 

3.1. Linearization 

Using the Taylor expansion method, the system (1) can be 
expressed around its equilibrium point at the origin as 
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where m and n are coefficient vectors and F and G are matrices 
with appropriate dimensions. In addition, ( ), , u∆ z η  is the 

matched uncertainty and ( , )ηΔ z η  denotes the vector of zero-
dynamic modelling error or the unmatched uncertainties. 
 
Assumption 2. The unmatched uncertainties are bounded with a 
conic sector bound as 

0 1 2( , ) c c c≤ + +ηΔ z η z η ,                                      (3) 

where ( 0,1,2)ic i =  are known positive constants.  

Let us define ,
TT T =  ξ z η  and introduce the combined control 

law as 

 
L ad Ru u u u= − − ,                                                            (4)  

Then, the system (2) can be described as  
( )L ad Ru u u

y
= + + ∆ − − +
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Note that, since the system is non-minimum phase, some 
eigenvalues of A  are positive. First, the linear controller Lu is 
designed to stabilize the linear part of the system. 

3.2. Linear Controller Design 

Let 1 1 0T= >P P  be the solution of the following Riccati equation 

for some 1 1 0T= >Q Q :  

1 1 1 1 12 0T T+ + − =P A A P Q P bb P .                                  (6) 
The linear control law is proposed as 

ˆ
L cu Kρ= − = − ξ ,                                                             (7) 

where ξ̂  denotes the estimation of ξ  and the vector gain cK is 
derived as  

1
T
cK = P b .                                                                         (8) 

Substituting (8) in (6) gives 

( ) ( )1 1 1 0T
c cK K− + − + =A b P P A b Q .                      (9) 

Equation (9) ensures that cK−A b is a stable matrix. From (5) it 
can be easily concluded that Lu stabilizes the system in the 
absence of nonlinearities. 

3.3. Neural Network-Based Adaptive Controller 

The adaptive part of the control law in (4) adu  is designed to 
approximate ( , , )u∆ z η . Hence, there exists a fixed-point 
problem as 

( ) ( , , )ad L R adu t u u u= ∆ − −z η ,                                    (10) 
The following assumption provides conditions, which guarantee 
the existence and uniqueness of a solution for adu  [7]. 
Assumption 3. The map adu → ∆  is a contraction over the 
entire input domain. This means, the following inequality should 
be satisfied 

1
adu

∂∆
<

∂
.                                                                        (11) 

Substituting (1), (2) and (4) into (11), yields    
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It can be easily verified that condition (12) is equivalent to the 
following two conditions 

sgn( ) sgn( ), 0.5 .b f u b f u= ∂ ∂ > ∂ ∂                    (13) 
Under the observability condition of system in (1), it has been 
shown by Lavertsky et al. that the continuous-time dynamic 

( , , )u∆ z η  can be approximated using the delayed version of 
inputs and outputs as [15] 

( ) 0( , , )u ε∆ = Γ +z η ζ ,                                                  (14) 

where [ ]1 T NR= ∈ζ y u and  
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and 0ε  is directly proportional to the sampling time interval dT . 
Hence, 0ε can be ignored by selecting dT sufficiently small. 
On the other hand, any sufficiently smooth function can be 
approximated on a compact set with an arbitrarily bounded error 
by a suitable large MLP [16]. Therefore, a set of ideal weights 

*w and *V  on the compact set Ωζ  exists such that 

( ) * *
1, , ( )T Tu ε∆ = +z η w σ V ζ ,                                      (15) 

where * mR∈w  is a vector containing synaptic weights of the 
output layer, * N mR ×∈V  is a matrix containing the weights for 

the hidden layer, [ ]1
T

mσ σ=σ L is a vector function containing 
the nonlinear functions of the neurons in the hidden layer, and 

1 1Mε ε≤ , in which 1Mε  depends on the network architecture. 

The ideal constant weights *w  and *V  are defined as 

( )
( )

( )* *, : arg min sup ( )T T

, ∈Ω ∈Ω

  = − Γ 
  w ζ

w V ζ
w V w σ V ζ ζ , (16) 

where ( ){ }F F
,, M MΩ = ≤ ≤w w Vw V w V , M w  and 

M V  are  positive numbers, and 
F

⋅  denotes the Frobenius norm. 
Since ∆  can be approximated with an MLP NN, hence, an MLP 
is employed to construct the adaptive control term as 

( )T T
adu = w σ V ζ .                                                     (17) 

In practice, the weights of this neural network may be different 
from the ideal ones, defined in (16). Therefore, an approximation 
error exists.                                                                                    

Lemma 1. The approximation error, which arises from the 
difference between (15) and (17), satisfies the following equality: 

 ( ) ( )( , , ) tr ( )T T T T
adu u tδ∆ − = − + +z η w σ σV ζ V ζw σ%% & & ,  (18) 
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and m mR ×∈σ&  is the derivative of σ  with respect to the input 
signals of all neurons in the hidden layer of NN, and 

( 0,1, 2)id i =  are positive constants. 
 
Proof : See [8] and [13]. 
 
The adaptation rules for the weights of neuro-adaptive control 
term adu , defined in (17), is proposed as   
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where ρ  is introduce in (8), γ w  and γ V   are learning constants, 

and wk  and Vk  are σ -modification gains [17, 18].    

Using (15)-(17) and the fact that ( ) 1iσ ⋅ ≤ , the following 
conservative upper bound of the approximation error can be 
calculated 
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3.4. The Adaptive Robustifying Control Term 

The neuro-adaptive control term adu , with adaptation rules, given 
in (20),  cannot provide exact solution to the matched uncertainty 
and there still exists an approximation error ( )tδ . In order to 
compensate for this error, an adaptive robustifying term Ru  is 
proposed. Using (16) and (19) the upper bound of the 
approximation error can be calculated as 
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where { }*
0 1 2 1 2max , , , ,d d d d M d Mϕ = w V  and  

( )F
1 1χ ≡ + + +ζ V w  

Hence, ( )tδ  can be limited to a multiplication of the known 

function χ  and an unknown gain *ϕ . The following adaptive 
robustifying term is introduced: 

( )Ru signχ ϕ ρ= − ,                                                  (23) 
with the following adaptation rule: 

ϕϕ γ χ ρ=& ,                                                                 (24) 

where ϕγ  is the learning constant and  ϕ  denotes estimation of 

the unknown gain *ϕ .  
Note that, because of the universal approximation property of 
NNs, the approximation error ( )tδ  is bounded, so it is always 
possible to find a positive constant MU such that         

  R Mu U≤                                                                         (25) 
 

3.5.  Observer Design 

For realization of weight adaptation rules, given in (20) and (24), 
(i.e. dependent only on the available data), a linear state estimator 
is proposed as 

  ( )ˆ ˆ ˆ
L ou K y= + + −ξ Aξ b cξ& ,                                        (26) 

where oK is selected such that oK−A c  is stable. The stability 

of oK−A c  assures existence of the solution 2 2 0T= >P P  for 

the following Riccati equation for some 2 2 0T= >Q Q :  
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c P Q P c

     (27) 

Let the nonlinear system (5) be equipped with the observer (26), 
and define  

  ,
TT T =  E ξ ξ%                                                                  (28) 

where ˆ= −ξ ξ ξ% . Then, the augmented system dynamic  can be 
described as 
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     (29)  

where ad Ru uβ = ∆ − − .  
The available output signal, defined in (7), can be represented as 

[ ]
0

ˆ
c c cK K Kρ = =

c

ξ E14243 .                                              (30) 

Moreover, using (3) and (28) the following upper bound can be 
represented as  

0 1α α≤ +ηΔ E ,                                                     (31) 

where 0 0cα =  and 1 1 2c cα = +  
 
 

4. STABILITY ANALYSIS 
 
Theorem: Consider the linear controller (7), the neuro-adaptive 
control adu in (17) with the adaptation rules (20) and  the 
robustifing control term Ru in (23). Then, the error signals 

E , w% ,  and V%  in the closed-loop system (29) are uniformly 
ultimately bounded.  
 
Proof: Define the Lyapunov function as 

( ) 222
1 2

1 1 1 1ˆ ˆ
2 2 2 2

T T
F

V

L
ϕ

ϕ
γ γ γ

= + + + +
w

ξ P ξ ξ P ξ w V% % % %% . 

Using (28), this Lyapunov function can be represented as 
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Define *ϕ ϕ ϕ= −% , where *ϕ  is the ideal gain of their 

corresponding estimated value ϕ , respectively, and *w  and *V  
are the ideal constant weights, defined in (16). Then, from (19) 

= −w w&& %  and = −V V&& % . Using (29) and (32), the time-derivative 
of L becomes 
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Using (8) and (30), it yields  
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Substituting from (33) and (7) and using (6) and (27) it gives 
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since 1 1 0T= >Q Q  and 2 2 0T= >Q Q , it is easy to conclude 
that the matrix Q is positive definite. Substituting  

( ) ( )trT T T T
Ruβ δ= − + + −w σ σV ζ V ζw σ%% & &  from (18) and 

(29), results in 
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Using the bounds (22) and (31), and the robustifying control (23) 
yields  
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where from (21) and (25) 1: 2M w M MmM Uβ ε= + +  and mQ  
denotes the smallest eigenvalue of Q. By applying the adaptation 
rules (20), it gives 
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Using the learning rules (24) and completing the square terms, 
yields 

( ) ( )
22 2

1 21 1EL A k k R≤ − − − − − +E w V& %%        (35) 
where  
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Let 1α  be such that the matrix Q can be find to ensure 

  1 12 2mQ α> +PH ,                                                     (36) 

and let 2 1k >  and 1 1k > , and define the following compact 
sets around the origin: 
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22 2, , E w V
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Equation (35) shows that 0L <&  once the errors are outside the 
compact set Ω . Hence, according to the standard Lyapunov 



theorem extension [19], the error trajectories , andE w V%% are 

ultimatelybounded.□ 
Remark1: From (35) it can be seen that L&  is strictly negative as 
long as E  is outside the compact set EΩ .Therefore, there exists 
a constant time T such that for t T> , the error E  converge to 

EΩ [5]. This means that E
E

R
A ε≤ =ξ and consequently 

Eε≤z  and Eε≤η .  Figure 1 shows the block diagram of the 
proposed control method. 
 

 
 

Figure 1. Block diagram of the proposed control method. 
 

Remark 2. As Eq. (35) shows, the unmatched uncertainties, and 
the NN reconstruction error embodied in the constants 0α  and 

Mβ  increase the error bound. Note that, since adu  and Ru  are 
designed to cancel out ∆ , the upper bound Mβ  defined in (34) is 
very conservative, and in practice the real bound would be much 
smaller. 
 

5. SIMULATION EXAMPLES 

The proposed controller in this paper is applied to stabilize the 
TORA system [10], [14]. This system, depicted in Figure 2, is 
described by the following equations: 
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where θ  is the angle of rotation, x is the translational 
displacement, and τ  is the control torque. The positive constants 
k, l, J, M, and m denote the spring stiffness, the radius of rotation, 
the moment of inertia, the mass of the cart, and the eccentric mass, 
respectively. Define the states and the input variables as 

1 2

1 2

sin , cos ,
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 Figure 2. A translational oscillator with a rotational actuator  
 
In these coordinates, the system can be described by a set of 
equations in the form of (2) as 

1 2
1 2 1

2 1 1 1 1 1 2 1 1 1
1 2 1

1 2 1 1 1

1 2

2 2 1 3 1

( ) cos ( ) sin cos
( ) sin cos ( ) ( )

sin ,

2 2

z z
z k z z z z z

m l z z z z M + m z u

z

α φ η α α φ
φ φ

η η
η α η α

− −

− −

=
 = −


− +
 =
 = − +

&
&

&
&

 

where 
2 2 2 2
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The zero dynamics of this system are 

{ 1 2

2 2 1.
η η
η α η

=
= −

&
&  

It is easy to check that these zero dynamics are unstable, so the 
system is non-minimum phase [14]. The linearized version of the 
TORA system is  

1 2
2 1 1 1

2 1 2 1 1 1

1 2

2 2 1 3 1

(0) (0) (0)
z z
z z k (M + m) u

z

α α φ α φ η φ
η η
η α η α

− − −

=
 = − + +
 =

= − +

&
&
&
&

 

Hence, the matched and the unmatched uncertainties can be 
represented as 

( ) ( ){

}

1 1
11

1 1 1 2
1 1 1 1 1 2 1 1

2 1 1
1 2 1 1 1 1

1, , ( ) ( ) (0)
( ) (0)

( ) cos (0) ( ) sin cos

( ) sin cos (0)

2 2

u M + m z u
M + m

k z z m l z z z z

z z z z

φ φ
φ

α φ φ η φ

α α φ φ

− −
−

− − −

− −

 ∆ = − 

 + − − 

 − − 

η z

( ) ( )1 3 1 1, sinz z zα∆ = −η η  
Note that Assumption 1 is satisfied; that is 

1
1

f( , , ) ( ) ( ) 0z u M + m z
u
η

φ −∂
= >

∂
 

Moreover, it is easy to show that 1(0) ( )zφ φ≤  so the following 
inequality, which verified Assumption 3, is always satisfied:  

1 1
1( ) (0) 0.5( ) ( )M + m M + m zφ φ− −≥  

The NN is of MLP type and has five neurons in the hidden layer 
with tangent hyperbolic activation functions. The weights are 
initialised randomly with small numbers. The input vector to the 
NN for 1 4n n= ≥  is 

[1, ( ), ( ), ( 2 ), ( 3 ), ( ), ( )]Td d d dy t y t T y t T y t T u t u t T= − − − −ξ
with 10 m secdT = . Also, the learning constants are selected as 

0.2γ γ= =w V ,  1ϕγ =  and 1 2 5k k= =  

x
M 

l 

τ  
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NN
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adu
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( )Ru ⋅  

ρ  y  u  

ζ  
,w V  

, ,w V ζ  

 



In addition, the closed-loop system is simulated using the 
following parameters: 

J = 0.0002175 kg/m2, M = 1.3608 kg, m = 0.096 kg, 
l = 0.0592 m, k = 186.3 N/m 

The initial states are  
1(0) 0.025η = , 2 1 2(0) (0) (0) 0z zη = = = . 

For the sake of comparison, the simulations are carried out using 
the same parameters and the same initial conditions as in the 
reference [10], where the remarkable back-stepping approach is 
employed. Simulation results show that the response of the closed-
loop system using the proposed controller is nearly the same as the 
response of the back-stepping control method (Figure 3). The 
unmatched uncertainty cancellation, norm of NN’s weights, and 
estimation errors are shown in Figure 4.  
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Figure 3. Response of the TORA system. Dotted line: back-
stepping based controller, solid line: the proposed controller. 
- 
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Figure 4. Response of the TORA system. (a) matched uncertainty 

cancellation (b) norm of weigth (c) errors  of estimationξ%  

6.  CONCLUSIONS 

A direct adaptive output-feedback stabilization method for 
nonlinear non-minimum phase systems was proposed in this 
paper. The proposed method relays on state estimation. The 
approach can be applied to uncertain non-affine nonlinear 
systems, from which a linear approximation can be derived. The 
ultimate boundedness of all states including internal dynamics and 

the NN weights was shown using the Lyapunov direct method. 
Simulation results, performed on the TORA system, showed good 
performance as compared to the back-stepping control method. 
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