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Abstract: Navigation is defined as finding the position of a 
moving vehicle and inertial navigation is among these methods. 
Unfortunately, inertial navigation has errors due to different 
reasons such as inertial sensors. These errors must be corrected 
by some means. In this paper, a method based on Kalman filters 
and artificial neural networks is introduced to calibrate inertial 
sensors during the navigation. Moreover, the proposed method 
provides better accuracy of the sensor models, when the 
navigation aid is not present for some times. Simulation results 
show the effectiveness of the proposed method as compared to 
the Kalman filter. 
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1.   Introduction 
Inertial Navigation System (INS) is one of positioning 

methods that is based on Newton laws of motion. INS is 
used in different moving vehicles such as airplanes, 
missiles, ships, and mobile robots. Inertial sensors are 
part of INS and provide input information to the 
computing system. Two forms of sensors are used in INS: 
Accelerometers and Gyroscopes. These sensors provide 
information to calculate the position, the velocity, and the 
orientation (or the attitude) of a vehicle along three 
coordinate axes.  

Using gyroscope outputs, the Direction Cosine Matrix 
(DCM), which converts the body frame (i.e. the roll-
pitch-yaw frame) to the navigation reference frame, is 
updated. By multiplying this matrix to accelerometers 
outputs, the vehicle acceleration is converted from the 
body frame to the reference frame. By adding the local 
gravitational acceleration, the vehicle acceleration in the 
reference frame is calculated. Finally, double integration 
of this acceleration provides vehicle movements in the 
reference frame. 

The attitude of a vehicle is defined as the tilt angles 
between the vehicle and the local horizontal plane (the 
roll and pitch angles) and the angle between the vehicle 
and the local geographical north (the azimuth angle). 
Before navigation, the reference frame must be selected. 
The reference frame used here for the INS has axes, 
which do not move with the earth rotation; this frame is 
known as the inertial frame. In fact, accelerometers and 
gyroscopes measure their corresponding variables in this 
frame. 

The navigation equations are provided in followings. 
First, the DCM is updated according to 
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Where i
bC  is the DCM, which is transformed from the 

body frame to the earth frame and b
ibΩ  is the anti-

symmetric matrix of the gyroscope output vector. The 
anti-symmetric matrix of vector x can be represented as 
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Where bf is the vector of accelerometers output, if is the 
vehicle acceleration, iv and ip  are the velocity and 
position vectors in the inertial reference frame, 
respectively. The attitude of the Vehicle can be calculated 
directly from DCM. Using Euler angles (roll, pitch, and 
yaw) to represent the attitude, navigation equations are: 
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Fig. 1: INS calculations schematic 

 

 
Fig.2: INS/GPS data integration using KF 

 
The Euler angles along with the position and velocity of 
the vehicle represent outputs of the INS. Inputs to this 
system are the data coming from the inertial sensors. Set 
of Eq. (4) show that navigation equations are nonlinear. 
The schematic diagram of inertial navigation calculations 
is shown in Fig.1 [1]. 

 

2.    INS errors 
There are different error sources in the INS system. 

The most important sources are [3]: 
1. Inertial sensor errors (bias, etc.) 
2. Initial attitude, velocity and position error 
3. Uncertain earth gravity model  

Because INS algorithm involves integral operation of 
variables over time, any error grows with time. Hence, 
the navigation accuracy will degrade over the operation 
time. This is the most important disadvantage of INS. 
Because of these growing errors, INS needs Navigation-
aid systems. In other words, there is need for the absolute 
information of position, velocity, or attitude of the 
vehicle [2]. 

Nowadays, one of the most employed navigation-aid 
systems is the Global Positioning System (GPS). GPS 
consists of satellites that send signals to vehicles, which 
are equipped with GPS receiver, enable vehicles to find 
their position and velocity. Due to advantages of GPS, 
integration of INS and GPS in a vehicle can improve 
performance and overcome many difficulties. However, 
the main disadvantage of GPS is that there is need for 
direct line of sight to at least four satellites. There are 
instances where the GPS signal may not accessible such 
as in urban areas, tunnels, etc. [3]. To overcome this 
problem, one approach is that as long as the GPS signal is 
available, it is used for navigation aiding and the INS is 
calibrated using these data. During the GPS outages, the 
calibrated INS provides position information by itself. As 
the gravity model uncertainty can be neglected in many 
cases, calibration of INS consists of finding errors in 
inertial sensors and initial navigation errors.  

Calibration of INS using the GPS data can be 
performed using different methods. Kalman filters have 
been extensively used by researchers for INS/GPS 
integration. The Kalman Filter (KF) can estimate 
navigation errors as well as parameters of inertial sensor 
errors. KF performance needs two sets of equations: the 
process equation and the measurement equation. The 
process equation is the state-space model of the system 
with sensors errors as its inputs and velocity, position and 
attitude errors as its state variables. Moreover, error 
parameters of inertial sensors are augmented to state 
variables. Therefore, the error dynamics of inertial 
sensors must be modeled first. Measurement equation is 
the relation between states and GPS outputs.  

When GPS data are available, states can be estimated 
and updated. Since error parameters of sensors are 
components of the state vector, inertial sensors are 
calibrated as well. Furthermore, the attitude, position, and 
velocity errors are other part of the state vector. Hence, 
with estimation of these parameters, navigation errors can 
be corrected. Fig 2 shows the INS/GPS data integration 
using the KF. 

The classical KF approach has some drawbacks. First, 
KF needs a state-space model of the process and the 
measurement. As mentioned earlier, error parameters of 
inertial sensors (such as the bias) are augmented to the 
state vector of navigation equations. Moreover, error 
model of sensors is part of process equation. Therefore, if 
the model of inertial sensor errors is imprecise, the KF 
may not yield acceptable results. In fact, modelling of 
sensors errors is not an easy task in many situations. In 
this paper, using the KF and Artificial Neural Networks 
(ANN), a more accurate model of the inertial sensors is 
provided. 

 

3.   Low Cost Inertial Sensors 
In recent years, the application of micro-machined 

inertial sensors that use MEMS (Micro Electro-
Mechanical Systems) has grown. This system can reduce 
sensor components and its electronic circuits to size a 
chip. These sensors can be made in batch form and 
production cost be divided between chips. Therefore, the 
cost of the navigation system can be reduced 
significantly. 

Due to many sources, the error of micro-machined 
sensors is more than other INS sensors. These sensors are 
made in small sizes and are very sensitive to 
environmental variables such as the temperature, 
pressure, electrical and magnetic fields. Due to these 
characteristics, micro-machined inertial sensors outputs 
vary quickly and in many cases vary randomly. Hence, 
modeling these changes is difficult. Moreover, sensitivity 
to surrounding conditions adds some new forms of error 
to these sensors and in many cases the magnitude of error 
is more than other INS sensors. In fact, derive a suitable 
stochastic model that reflects sensors operations in 
different environments and over long period of 
functioning is difficult. This paper presents more reliable 
error models for INS sensors [3, 4]. 
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Artificial neural networks are parallel processors that 
can approximate nonlinear and complicated functions, 
which are not possible using conventional methods. 
Neural networks consist of some computational elements 
(neurons). Every pair of neurons is connected with a 
synaptic weight (or weight for short). The performance of 
a neural network is defined by its weights. After training 
the network with proper data, these weights are adapted 
to a value such that the network can approximate the 
required nonlinear function [5]. There are many forms of 
artificial neural networks; one of the simplest and most 
important is the Multi-Layer Perceptron (MLP).  

In this paper, the Extended Kalman Filter (EKF) is 
used to train this network. In this approach, weights are 
assumed as states of a dynamic system and are estimated 
using the EKF. 

Let Г be the function that relates inertial sensors 
outputs to true values of these sensors. This function can 
be dynamic or static. That is, the output of sensors may 
depend on sensor inputs in past instants 
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Where bf% and b
ibω%  are actual outputs of sensors, and bf  

and b
ibω  are true values of the linear acceleration and the 

rotational velocity, respectively. Obviously, due to the 
existence of errors in sensors, their outputs are not equal 
to true values.  

If a neural network is trained such that it 
approximates the inverse of Г, then sensors can be 
calibrated using this NN. In this case, the neural network 
output is equal to approximation of the measured true 
value (the linear acceleration and the rotational velocity) 
during navigation. However, training of neural networks 
requires input/output data of the function. In navigation, 
true values of the acceleration and velocity are not 
accessible. In fact, these variables are inputs of 
navigation equations (Eq. 4) and the attitude, velocity, 
and position are outputs of these equations. If navigation-
aid data are the position of the vehicle, then, the true 
value of the position is available. Therefore, the actual 
error that is necessary for training the NN is available 
when navigation equations are used. 

In this paper, the training of NN is performed using 
EKF. The state variables of this EKF consist of two parts: 
the first part is the attitude, velocity, and position of the 
vehicle and the second part is the weights of the NN. 
Inputs to the system are outputs of inertial sensors. The 
goal is to estimate state variables of EKF using external 
information provided by the navigation-aid system. The 
proposed method is shown in Fig. 3. The input vector to 
the proposed system is 
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The dynamic of the new system is 
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Fig.3: Proposed data integration scheme 

 

Where N is the nonlinear network between inputs and 
outputs, f is the nonlinear navigation equation and g is the 
measurement function (i.e. the relation between external 
data and state variables). By determining weights in the 
NN, the input/output mapping of inertial sensors and their 
calibration are defined [6, 7]. When the external 
information is available, EKF estimates states of Eq. 7. In 
this situation, EKF is in the time update/measurement 
update mode and the neural network is in the training 
mode. Estimating weights leads to calibration of sensors. 
Other states provide the attitude, velocity, and position of 
the vehicle. However, as mentioned earlier, the 
navigation-aid system is not available at all time. During 
GPS outages, the neural network mode changes from the 
“training mode” to the “using mode” and EKF works in 
time update mode. In this situation, outputs of inertial 
sensors are set as network inputs and an approximation of 
the true linear acceleration and rotational velocity are 
obtained as network outputs. These outputs are inputs to 
navigation equations. Solving navigation equations yields 
the corrected attitude, velocity, and position of the 
vehicle. This procedure is called the Artificial Neural 
Network/KF (ANN-KF) method in this paper. Using this 
method, inertial sensors can be calibrated during the 
navigation and find navigation variables without the need 
to model errors of inertial sensors. In fact, error models 
are approximated online using the NN. Fig. 3 shows the 
proposed structure. In this figure, the block designated 
with “dynamical model” is the model used by EKF (Eq. 
(7)). 

 

4.   Simulation Results 

The performance of the proposed method will be shown 
through simulations. Assume that six inertial sensors 
have constant bias and scale factor errors. However, for 
the modeling, it is assumed that only bias errors exist 
(wrong modeling). Two NNs are employed to 
approximate the mapping of the sensors: one NN for 
accelerometers and the other NN for gyroscopes. Each 
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NN has three inputs (outputs of inertial sensors) and three 
outputs (approximation of actual linear acceleration and 
rotational velocity, respectively). Each NN has two 
neurons in the hidden layer with logistic sigmoid 
activation function and three neurons in the output layer 
with linear activation function. It is assumed that the 
navigation-aid system provides the required information 
in the form of vehicle position in north-east-down 
directions. Moreover, it is assumed that this information 
is updated every second with the accuracy of one meter. 
First, it is assumed that in the time interval of 0-800 
seconds, the navigation-aid data is available. During this 
time, EKF trains the NN. Fig. 4 shows the changes 
occurred in the weights of the NN for accelerometers. 
The weights in the Gyroscopes NN converge similarly.  
As was mentioned before, the EKF in the proposed 
method estimates navigation variables too. Figs. 5-7 
show the errors in azimuth angle, the north velocity, and 
the east position of the EKF and the proposed ANN-EKF 
method. As these figures show the conventional EKF 
cannot cope with the false error modeling and its state 
variable diverges (the EKF is model dependent) while the 
proposed ANN-EKF method can still provide acceptable 
results. 
Next, it is assumed that the navigation-aid system is not 
available during the time interval of 800-1200 seconds. 
Figs. 8-10 show the error of the azimuth angle, north 
velocity, and east position during 400 seconds of GPS 
unavailability. During these times, NNs are trained and 
the last estimated values of weights are used for 
modeling approximation. Although the navigation error 
is growing in both methods, nevertheless, the proposed 
method can tolerate the navigation-aid outage much 
better than the EKF alone.  
Next simulation is to verify that if navigation-aid data 
become available after 1200 seconds, is it possible to 
continue data integration or not. Figs 11 to 13 show error 
in yaw angle, north velocity and east position, if GPS 
data connects again in 1200th second. This figs show 
clearly that data integration can continue after 
reconnecting navigation-aid system. 
 

 
Fig.4: Accelerometer network weight evolution 

 
 

  
 

 
Fig.5: Yaw angle error during data integration 

 

 
Fig.6: North velocity error during data integration 

 
 

  
Fig.7: East position error during data integration 

 
 

 
Fig.8: yaw angle error during GPS outage 
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Fig.9: north velocity error during GPS outage 

 

 
Fig.10: east position error during GPS outage 

 

 
Fig.11: yaw angle error after reconnecting GPS  

 

 Fig.12: north velocity error after reconnecting GPS  
 
 

 
Fig. 13: east position error during GPS outage 

 
 

5. Conclusions 
In this paper, a new method for online calibration of 
inertial sensors using Kalman filter and artificial neural 
networks was proposed. The states of Kalman filter are 
synaptic weights of the NNs and the attitude, velocity, 
and position of the vehicle in the reference frame. Two 
NNs were employed to model the inertial navigation 
sensors: accelerometers and gyroscopes. These networks 
were trained when the navigation-aid system (e.g. GPS) 
is available. During the outage of the navigation-aid 
system, no training of NNs was performed and these 
networks provide an approximation of the actual position, 
velocity, and attitude of the vehicle. Simulation results 
were compared with the EKF-alone system and it was 
showed that the proposed method could provide good 
modeling of the inertial sensors even when false sensor 
errors were provided to the networks. Moreover, it could 
cope with the navigation-aid outage for relatively long 
navigation times. 
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