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Abstract—This paper presents a nonlinear model predictive control (NMPC) method with adaptive neuro-modelling for redundant
robotic manipulators. Using the NMPC, the end-effector of the robot tracks a predefined geometry path in the Cartesan space
without colliding with obstacles in the workspace and at the same time avoiding singular configurations of the robot. Furthermore,
using the neural network for the model prediction, no knowledge about system parameters is necessary; hence, yielding robustness
against changes in parameters of the sysem. Numerical results for a 4DOF redundant spatial manipulator actuated by DC
servomotor s shows effectiveness of the proposed method.
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1. Introduction

One of the major chalenges in robotic manipulators is the path tracking and the obstacle avoidance. The main reason for
development of manipulator robots is to replace human in doing long and repetitive operations and unhealthy tasks. In this case,
robots must be capable to operate effectively in complex environments. In particular, these robots are needed to track a
predefined path in such away that no collision with obstaclesin the environment occurs. High degrees of freedom for redundant
manipulators lead to infinite number of possible joint positions for the same pose of the end-effector. Hence, for a given end-
effector path in the Cartesian space, the robot can track it in many different configurations; among these, the collision free and
singular free tracking must be sdlected. Finding feasible path for joints of redundant manipulators for a given end-effector path
is called the redundancy resolution [1]. Redundancy resolution and obstacle avoidance are considered in papers. Using the
gradient projection technique, redundancy and obstacl e avoi dance can be solved [2]. In task-priority redundancy resolution
technique, the tasks are performed with the order of priority. Path tracking is given the first priority and obstacle avoidance or
singularity avoidanceis given the second priority [3, 4]. Thistechnique yields locally optimal solution that is suitable for real-
time redundancy control but not for large number of tasks. The generdized inverse Jacobin and extended Jacobin techniques,
which are used for redundancy solution, are time consuming [5]-[7]. Optimization techniques, which minimize the cost function
subject to constraints, like the end-effector path tracking and obstacle avoidance, are not suitable for on-line applications [4].

In this paper, a Nonlinear Model Predictive Control (NMPC) method is presented for redundancy resolution considering
obstacles and singularities avoidance. Although the Model Predictive Control (MPC) is hot a new control method, works related
to manipulator robots usng MPC is limited. Most of the related works are on the joint space control and on the end-effector
coordinating. The linear MPC isused in [8]-[10] and NMPC isused in [11]-[14] for joint space control of manipulators.

Using NMPC, the input voltages of DC servomotors of joints are obtained in such a way that the end-effector of the
redundant manipulator tracks a given path in the Cartesian space considering obstacles and singul arities avoidance.

When the robot dynamic are uncertain, adaptive control laws must be used in order to tackle this problem. Adaptive control
methods using neura network are implemented in literatures for controlling highly uncertain and nonlinear systems [15, 16]. In
this paper, neural networks are used as a prediction system in NMPC. Using neura network no knowledge about system
parametersis necessary. Moreover, system robustness against changes in parameters is obtained.

This paper is organized as follows: Section 2 presents nonlinear dynamic of a 4ADOF spatia redundant manipulator including
the actuators dynamic. Section 3 describes the nonlinear model predictive control method. Section 4 explains how to obtain
prediction model of the robot using neura networks. Section 5 implements the NMPC for the path tracking and obstacles
avoidance for a4DOF manipulator. Simulation results are presented in section 6. Conclusions are drawn in Section 7.
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2. Manipulator Robot Dynamic
Schematic diagram of a 4DOF spatia redundant manipulator robot is shown in Fig. 1. Table | gives Denavit-Hartenberg
parameters of this robot [17]. Then, the position of the end-effector in the Cartesian space can be caculated in terms of joint
angles asfalows:
ext &(14Co *15Cg +1,0,)Y
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The dynamic model of the robot manipulator can be obtained using the Lagrangian method as[17, 18]
s
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Fig. 1 Schematic of a 4ADOF spatid manipul aor
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where 81 R"is the angular position of joints, M (8)1 R" "is the symmetric and positive definite inertia matrix, C(ﬂ,é)T R"is
the centrifuga and coriolis force vector, G(8)T R"is the gravity vector, D(é)T R"is the vector for joints friction of the links,
t1 R" isthe torque vector of joints, and n is the degree of freedom, which is equivalent to four for the robot considered in this
paper. The above matrix and vectors are given in Appendix.

Friction for joint i isdefined as[18]
D(i) = D4 + D, sgn(d) €)
where D, and D, are coefficients of the viscous and dynamic frictions, respectively.
The dynamics of the armature-controlled DC servomotors that drive the links can be expressed in the form [18]
T, =K;i,
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wheret 1 R'isthe vector of electromagnetic torque, K, T R"" is the diagonal matrix of the motor torque congtant, i, 1 R" is
the vector of armature currents, J,, 1 R"" is the diagona matrix of the moment inertia, BT R" "is the diagona matrix of
torsional damping coefficients, o, .8, .6 7 R" denote the vectors of motor shaft positions, velocities and accelerations,
respectively, T, 1 R"is the vector of load torque, V,1 R" is the vector of armature input voltages, R, T R" "is the diagonal
matrix of armature resistances, L, 1 R""is the diagonal matrix of armature inductances, and K .1 R"" is the diagonal matrix
of the back electromotive force (EMF) coefficients.

Since dynamic equations of DC servomotors are considered here, the rel ationship between the robot joint and the motor-shaft
can be represented as

R:B—:Tm (5)

m

where r1 R""is a diagona positive definite matrix representing the gear ratios for n joints. Since armature inductances are
small and negligible, Eq. (4) can be expressed as [15]

KK K
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Using Eq. (5) to eliminate g and tr,in EQ. (6) and then subgtituting for t using Eq. (2), the governed equation of n-link
robot manipulator including actuator dynamics can be obtained as
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According to Eq. (7), the armature input voltages are considering as control efforts, respectively. The detailed parameters of
the robot manipulator and DC servomotors are given as Table Il and Table 111, respectively.

TABLE |
DENAVIT-HARTENBERG PARAM ETERS OF THE ROBOT IN FIG.1
Link a° a d (i
1 90 0 0 a;
2 |2 0 d,
3 |5 0 ds
4 0 l, 0 a,
TABLEII
MANIPULATOR ROBOT PARAMETERS
Link 1 2 3 4
I (m) 1 05 04 0.3
m (kg) 1 05 04 03
TABLEIII
Dc SERVO MOTORS PARAMETERS
M otor 1 2 3 4
Ra 6.51 6.51 651 6.51
Ke 0.7 0.7 0.7 0.7
K+ 05 05 05 05
Bn | 64°10°%| 64 10%| 64" 107%| 64" 10°%
N 0.2 0.2 0.2 0.2
R 1:100 1:100 1:10 1:10
Vi 24 24 24 24

3. Model Predictive Control

Unlikein classical control methods, where the control actions are taken based on the past outputs of the system, the MPCisa
mode-based optimal controller, which uses predictions of the system output to ca cul ate the control law [19, 20].

Based on measurements obtained at every sampling time k, the controller predicts the output of the system over prediction
horizon Np in the future using the model of the system and determines the input over the control horizon N¢ < Np such that a
predefined cost function is minimized.

To incorporate feedbacks, only the first member of the obtained input is applied to the system until the next sampling time
[19]. Using the new measurement at the next sampling time, the whole procedure of prediction and optimization is repested.

From the theoretical point of view, the MPC agorithm can be expressed as

u=arg ;min(J(k)) (8)
such that the following conditions are satisfied:
x(k k) =%
u(k + j k) =u(k+N,[K)), j* Nc
X(k+ j+1]k) = fa(x(k+ j|k),u(k + j|k))
y(k+j+1]k) = hy (x(k + j +1]k))
Xerin £ X(K+ j +1]K) £ Xy
Upin EU(K+ J [K) £ Uy
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where jT [0, Np-1], x and u are states and input of the system, X, is the initial condition, and fy and hy are the model of the
system used for prediction. The notation a(mjn) indicates the value of a at instant m predicted &t instant n. The intervas [Xmin ,



Xmax] @nd [Umin , Umex] Stand for the lower and the upper bound of states and input, respectively. The cost function J is defined in
terms of the predicted and the desired output of the system over the prediction horizon. MPC schemes that are based on
nonlinear model or consider non-quadratic cost function and nonlinear constrains on inputs and states are called Nonlinear MPC
[19].

The optimization problem (8) must be solved at each sampling time k, yielding a sequence of optima control laws
as{u’ (k| K),K,u"(k+ N, - 1)}. For optimization, the sequential quadratic programming method is used in this paper [21].

4. Prediction Model Using Artificial Neural Networ k

Asit was explained, a model of the system is needed for prediction in MPC. In this paper, a Multilayer Perceptron (MLP) is
used for modeling nonlinear dynamics of the robot in MPC. Using the neural network for model prediction, no prior knowledge
about system parametersis needed. The prediction is based on the input voltage, angular position, and angular velocity of joints
a the current sampling time. The output of the predictor is the angular position of the joint at the next sampling time. Using this
dructure, a one-step-ahead prediction of joints position can be obtained. However, in the predictive control, multi-step
predictions over the prediction horizon are needed. By applying one-step prediction recursively, multi-step prediction can be
achieved. In this case, the outputs of the neural network are considered as inputs for the next step. Using the neural network
recursively, high accuracy of one-step-ahead prediction is needed. For this reason, one neural network is implemented for every
link of the robot to predict the position of every joint angle. The structure of the employed MLP is shows in Fig. 2. Transfer
functions for the hidden and the output layer neurons are of tangent hyperbolic and linear types, respectively. The inputs are the
angular position and the angular velocity of joints, and the input voltage of theith joint a the current sampling time
[Vi(K), qu(K), 02(K), ds(k), g«(k), Dgs(k), Dao(K), Dgs(K), Dgs(K)] and the output is gi(k+ 1), which refers to the ith joint position at
the next sampling time.
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Fig. 2 Neura Network structure

The neural networks are trained offline first using the data gathered form the system. The main reason for this is that the
weights of NNs are initialized with random numbers; hence, without any offline training the robot might collide with obstacles.
The offline training does not need to be very accurate; just a rough familiarity of NNs with the robot behavior to avoid large
initia tracking error and/or collision with obstacles suffices. It should be noted that the online training of NNs can copewith dl
changes in robot parameters, including the masse of links, the friction of joints and parameters of servomotors.



5. Path Tracking and Obstacle Avoidance Using NM PC

The purpose of the path tracking and obstacle avoidance of robot manipulators is to obtain a control law such that the end-
effector tracks a given geometry path in the Cartesian space and at the same time to avoid collision of robot links with obstacles.
To achieve this purpose, the NMPC method is implemented in this paper. Block diagram of NMPC is shown in Fig. 3.

According to the NMPC algorithm, an appropriate cost function must be determined in order to obtain the control law.

For path tracking, the cost function must be directly related to the tracking error. On the other hand, the cost function for the
obstecles avoidance must be inversdy related to the distance between the obstacle and the manipulator. Hence, in this paper, the
cost function is defined as

N Dp (k+j k) Dpmin & - Do (k+jlk) - D, O
p % P -e Pmin Q % (¢] -e omax Q
3 4 (10)

=+
j=1 é eDPmax - eDPmin ﬂ Rg e' DOmin - e' DOmax

where Dp is the Euclidean distance between the end-effector and the geometry path in the Cartesian space, Do is the minimum
Euclidean distance between the manipulator and obstacles; moreover, Q>0 and R>0 are the weighting parameters.
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Fig. 3 Block diagram of NMPC

Notation a(mjn) in (10) indicates the value of a &t the instant m predicted at instant n. The intervals [Dpmin, Dpmax] @nd [Domin,
Doma] @re the range of variations for Dp and Do, respectively. According to the length of manipulator links, the value for Dppin
and Dpmay iSO and 2.4 meter and the value of Dopin and Domax iS 0 and 1.2 meter, respectively. Using the cost function in (10),
the two terms for the path tracking and the obstacle avoidance are normaized to [0 1].

Next, congrains in the optimization problem is considered. Considering the fact that the amplitude of input voltages is
limited, one of the constrainsis

Virin £ £V, (12)

where Vimin and Vimx Stand for the lower and the upper bound of input voltages for servo DC motors, respectively  (-24V
and 24V asTablelll shows).

Next, considering the fact that in singular configurations the joint velocities are infinite, the following constrain must be
taken into account:

min max

Gin £¢ £y (13)
where cf‘mm and cf‘max are the lower and the upper bound of the joints velocities (which are -400 and 400 deg./s, consdering the

robot and motors parameters), respectively.
By incorporating constrains (12) and (13) into the cost function, the optimization problem can be solved.

6. Simulation Results

The simulated results of the proposed control method are presented in this section. A rectangular path in the Cartesian space
aong with obstecles inside the work space is considered. The developed neural network for every link consists of three layers: 9
neuronsin the input layer, 10 neuronsin the hidden layer, and 1 neuron in the output layer.

Simulation results for the case of sampling time of 0.5 sec., N, = 5, N; = 1, without any changes in robot parameters are
shownin Figs. 410 9.

Figs. 10 and 11 show the resultswhen an additional 20 kg mass at t = 25 sec. is added to the fourth link of the robot.
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The optimization problem is solved using the SQP method. For more information refer to the MATLAB routine “fmincon”.

Fig. 12 shows the smulation runtime for the proposed method. As this figure shows, the runtime is mostly less than the
sampling time. However, it should be noted that: 1) the simulations are performed in MATLAB software, which requires more
time than a lower level computer program such as C++, 2) in simulations, solving the robot equations also incurs some



computational time, which is not required in practice, 3) some aspects of computations, such training of NNs, can be processed
in pardlel. Hence, the simulation run time can be much less than Fig. 12. Therefore, in practice, the proposed method can be
successfully applied to robot manipulators using conventional digital computers.

7. Conclusion

In this paper, to achieve path tracking and obstecle avoidance for robotic manipulators, the NMPC method was employed.
For this reason, two terms were introduced in the cost function, one for the tracking problem and one for the obstacle avoidance
and by introducing constrains to joints velocities, singularities were avoided. Moreover, neural networks are employed for
adaptive model prediction that can cope with changes in system parameters. The main advantage of NNs is that no prior
knowledge about nonlinear equations of the robot or its parameters is needed.

References

[1] E.S.Conkur, “Path planning using potential fieldsfor highly redundant manipulators”, Robotics and Autonomous Systems, Val. 52, pp. 209-228, 2005.

[2] J.L.Chen, J S Liu, W. C. Lee, T. C. Liang, “On-line multi-criteria based collison-free posture generation of redundant manipulator in constrained
workspace“, Robotica, Vol. 20, pp. 625-636, 2002.

[3] P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano, ”Closed-loop inverse kinematics schemes for constrained redundant manipulators with task
space augmentation and task priority strategy*, International Journal of Robotics Research, Vol. 10, pp. 410-426, 1991.

[4 Y.Nakamuro, Advanced Robotics Redundancy and Optimization, Addison-Wedey Publishing Co., 1991.

[5] C.L.Boddy and J. D. Taylor,”Whole arm reactive collision avoidance control of kinematically redundant manipulators®, in Proc. of IEEE Int. Conf. on
Robotics and Automation, Vol. 3, pp. 382-387, Atlanta, Georgia, USA, May, 1993.

[6] T.Yoshikawa “Analysisand control of robot manipulators with redundancy”, in Proc. of the First International Symposium in Robotic Research , MIT
Press, Cambridge, MA, pp. 439-446, 1993.

[71 C.Chevallereau, W. Khdlil, ”A new method for the solution of the inverse kinematics of redundant robots*, in Proc. of IEEE Int. Conf. on Robotics and
Automation, pp. 37-42, Washington, DC, USA, April, 1988.

[8] F.Vdle F. Tadeo, T. Alvarez, ”Predictive control of robotic manipulators”, in Proc. of IEEE Int. Conf. on Control Applications, pp. 203-208, Glasgow,
Scotland, UK, September, 2002.

[9] J K. Kim, M. C. Han,”Adaptive robus optimal predictive control of robot manipulators’, 30th Annual Conf. of the IEEE Industrial Electronics Society,
Busan, Korea, November, 2004.

[10] A.Vivas, V. Mosquera, ”Predictive functional control of aPUMA robot”, ACSE Conf., CICC, Caro, Egypt, December, 2005.

[11] W. Wroblewski, ”Implementation of a model predictive control dgorithm for a 6dof Manipulator-simulation results”, Fourth Int. Workshop on Robot
Motion and Control, Puszczykowo, Poland, June, 2004.

[12] R. Hedjar, R. Toumi, P. Boucher, D. Dumur, S. Tebbani, ”Finite horizon non linear predictive control with integrd action of rigid link manipulaors”,
|EEE Conference on Control Applications, Int. J. Appl. Math. Comput. Sci., Val. 15, No. 4, pp. 101-113, ao(t, Canada, 2005.

[13] Ph. Poignet, M. Gautier, “Nonlinear model predictive control of arobot manipulator”, in Proc. of 6th Int. Workshop on Advanced Motion Contral, pp.
401-406, Nagoya,Japan, M arch, 2000.

[14] R. Hedjar, R. Toumi, P. Boucher, D. Dumur, “Feedback nonlinear predictive control of rigid link robot manipulators”, American Control Conference,
Anchorage, Alaska, May, 2002.

[15] SHuang, K.KiongTan, T.Heng Lee, A.S.Putra, “Adaptive Control of Mechanicd Systems Using Neural Networks”, IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applicationsand Reviews, Vol 37, Issue 5 ,pp. 897 - 903,Sept, 2007.

[16] Hayakawa T. Haddad, W.M. Hovakimyan, N. , “Neural Network Adaptive Control for a Class of Nonlinear Uncertain Dynamical Systems With
Asymptotic Stability Guarantees”, IEEE Transactions on Neura Networks, Vol 19, Issue: 1, pp. 80 - 89 ,Jan. 2008

[17] F.L.Lewis C.T. Abdallah, and D. N. Dawson, Control of Robot Manipulators Theory and Practice, Marcel Dekker Inc, 2004.

[18] T.Yoshikawa, Foundation of Robotics, Analysis and Control, the MIT Press, Boston, USA, 1990.

[19] F. Allgower, R. Findeisen, Z. K. Nagy, “Nonlinear model predictive control: from theory to application”, J. Chin. Inst. Chem. Engrs, Val. 35, No. 3, pp.
299-315, 2004.

[20] R.Findeisen, L. Imdand, F. Allgower, and B. A. Foss, “State and output feedback nonlinear model predictive control: an overview”, European journal
of control, Val. 9, pp. 190-206, 2003.

[21] R. Fletcher, Practical methods of optimization, John Wiley & Sons, 1987.

[22] Li.Xin Wang, A Coursein Fuzzy System and Control, Prentice-Hall International, Inc, 1997.



APPENDIX
G@D:o

O 1
G@L2)= 8 m L0, +mygl, +m glz_c +§1 myol, + m4glagcza+ Emé,glé,c234
al
GBY= gEmagla + m4glagcza+ Em4gl40234

1
G(4,l) = Em4g|4 Caa (A.l)

M@@:%mﬁ+§

2 2 26 2 g- 2 26 2 l 2.2
mzlz + mslz + m4|2 +C; +8_ms|3 + m4|3 +Co +_m4|4C234
] 3 @ 3
+(ms| I +2m4|3|2) C23Co + Myl4l3C04Cn + Myl41,C25C,
1 1
M (2,2) :Emzlz2 +myl2 +—ms|32 +mylZ+m,2 +§m4,l4,2 +m,ll, + mll,c,
+(n13II + 2myl,l,)c,
1, 1
M(3,3):§m3l3 +m,l2 +3m| + myl,l,c,

4'3l4

M@m:%mﬁ

M(2,3):M(3,2):1mslsz+ml +;m4|4|2+ lml +8—m3ll +m,l I3_(:3
o

+m,l,l; c,

M (2,4) =M (4,2) —%mAIAIZ + ;m 12+ %m4l4lsc4
_ 1 1

M (3,4) =M (4,3 —Eml + Emé,lsldc

M(L2) =M (2,1 =
M(L3)=M (31 =0 (A.2)
M@4)=M@41D=0

g mzl S M35~ My, loSyrs- mslszszzss' M3 Se-Ml3S, 9
cay= 1 «dd,

g Zmalzlsszzs' m4|4|3522334' malalzszzsa' ém |45223344

2
o]
g mslzlssmcz'*msl Sozaa™ M85~ 2Mylol 395C, Myl Sz =
«dd,
é m,| Iaszsacz I 4SS i
2
1 [o)
8 m I |35234C23 m4|4|25234C2' §m4|45223344 5&1&4
&l o}
e mlls,, + mslzszz 5 n"3'2'35223 = ms|352233 MSps =
1 1 : 2
C(2 1) - Q+ 2 m, Izszz + m4|2|35223 mA|4|3522334 +§ m4|2|452234 J-f(l
¢ N
é"' m,l,* S s
2

w1 "
8 mslzlsss malslzss —&3 8‘5 malalssa g&f"’ ( 'm4|3|454)&z&4
+(-mylgls,- 2m4|3|253)c§‘ch‘3 m4l3l454 &3&

ﬂ o}
rr13|3|252302 +— msl Sps t m4|352233 + Mylpl3S,5C, +— rnalalsszzssa +
CBB)Y= (; 42

1

1 =
+- 5 Myl 128 C, +— m4|45223344 B

o 6
+8§ mslzlsss + malslzssg d(zz +( 'malslaxsa)d(zd(a +8 2 m I |454 B&A
+ ('m4|3|454 )&3&4
ol 1 1 6 1 6
C4)= 85 malalssmcas +EmA|4|2523402 +8 mA|425223344 gd(lz + ?E m4|4|354 3&22
o .
o mids, S+ (s )dd, A3

where, |; and m (i=1 ...,4) arethe length and mass of the i link, respectively, g; and cf‘ are the angular position and the angular
velocity of thei™ joint, respectively, and ¢; = cos(q; ), § = Sin(g;), G =cos(q; +0;), ;= sin(q; +q;), and so forth.



