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Abstract—This paper presents a nonlinear model predictive control (NMPC) method with adaptive neuro-modelling for redundant 
robotic manipulators. Using the NMPC, the end-effector of the robot tracks a predefined geometry path in the Cartesian space 
without colliding with obstacles in the workspace and at the same time avoiding singular configurations of the robot. Furthermore, 
using the neural network for the model prediction, no knowledge about system parameters is necessary; hence, yielding robustness 
against changes in parameters  of the system. Numerical results for a 4DOF redundant spatial manipulator actuated by DC 
servomotors shows effectiveness of the proposed method.  
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1.  Introduction 
One of the major challenges in robotic manipulators is the path tracking and the obstacle avoidance. The main reason for 

development of manipulator robots is to replace human in doing long and repetitive operations and unhealthy tasks. In this case, 
robots must be capable to operate effectively in complex environments. In particular, these robots are needed to track a 
predefined path in such a way that no collision with obstacles in the environment occurs. High degrees of freedom for redundant 
manipulators lead to infinite number of possible joint positions for the same pose of the end-effector. Hence, for a given end-
effector path in the Cartesian space, the robot can track it in many different configurations; among these, the collision free and 
singular free tracking must be selected. Finding feasible path for joints of redundant manipulators for a given end-effector path 
is called the redundancy resolution [1]. Redundancy resolution and obstacle avoidance are considered in papers. Using the 
gradient projection technique, redundancy and obstacle avoidance can be solved [2]. In task-priority redundancy resolution 
technique, the tasks are performed with the order of priority. Path tracking is given the first priority and obstacle avoidance or 
singularity avoidance is given the second priority [3, 4]. This technique yields locally optimal solution that is suitable for real-
time redundancy control but not for large number of tasks. The generalized inverse Jacobin and extended Jacobin techniques, 
which are used for redundancy solution, are time consuming [5]-[7]. Optimization techniques, which minimize the cost function 
subject to constraints, like the end-effector path tracking and obstacle avoidance, are not suitable for on-line applications [4]. 

In this paper, a Nonlinear Model Predictive Control (NMPC) method is presented for redundancy resolution considering 
obstacles and singularities avoidance. Although the Model Predictive Control (MPC) is not a new control method, works related 
to manipulator robots using MPC is limited. Most of the related works are on the joint space control and on the end-effector 
coordinating. The linear MPC is used in [8]-[10] and NMPC is used in [11]-[14] for joint space control of manipulators.  

Using NMPC, the input voltages of DC servomotors of joints are obtained in such a way that the end-effector of the 
redundant manipulator tracks a given path in the Cartesian space considering obstacles and singularities avoidance.  

When the robot dynamic are uncertain, adaptive control laws must be used in order to tackle this problem. Adaptive control 
methods using neural network are implemented in literatures for controlling highly uncertain and nonlinear systems [15, 16]. In 
this paper, neural networks are used as a prediction system in NMPC. Using neural network no knowledge about system 
parameters is necessary. Moreover, system robustness against changes in parameters is obtained. 

This paper is organized as follows: Section 2 presents nonlinear dynamic of a 4DOF spatial redundant manipulator including 
the actuators dynamic.  Section 3 describes the nonlinear model predictive control method. Section 4 explains how to obtain 
prediction model of the robot using neural networks. Section 5 implements the NMPC for the path tracking and obstacles 
avoidance for a 4DOF manipulator. Simulation results are presented in section 6. Conclusions are drawn in Section 7. 
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2.   Manipulator Robot Dynamic 
Schematic diagram of a 4DOF spatial redundant manipulator robot is shown in Fig. 1. Table I gives Denavit-Hartenberg 

parameters of this robot [17]. Then, the position of the end-effector in the Cartesian space can be calculated in terms of joint 
angles as fallows: 
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The dynamic model of the robot manipulator can be obtained using the Lagrangian method as [17, 18] 

 
Fig. 1 Schematic of a 4DOF spatial manipulator 
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where nR∈θ is the angular position of joints, ( ) n nR ×∈M θ is the symmetric and positive definite inertia matrix, ( , ) nR∈C θ θ&  is 
the centrifugal and coriolis force vector, ( ) nR∈G θ is the gravity vector, ( ) nR∈D θ& is the vector for joints friction of the links, 

nR∈τ  is the torque vector of joints, and n is the degree of freedom, which is equivalent to four for the robot considered in this 
paper. The above matrix and vectors are given in Appendix. 

Friction for joint i is defined as [18] 
( ) sgn( )v i d iD i D Dθ θ= +& &                                                                           (3) 

where vD  and dD  are coefficients of the viscous and dynamic frictions, respectively.  
The dynamics of the armature-controlled DC servomotors that drive the links  can be expressed in the form [18] 
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where n
e R∈τ is the vector of electromagnetic torque, n n

T R ×∈K  is the diagonal matrix of the motor torque constant, n
a R∈i  is 

the vector of armature currents, n n
m R ×∈J  is the diagonal matrix of the moment inertia, n n

m R ×∈B is the diagonal matrix of 
torsional damping coefficients, , , n

m m m R∈θ θ θ& &&  denote the vectors of motor shaft positions, velocities and accelerations, 
respectively, n

m R∈τ is the vector of load torque, n
t R∈V  is the vector of armature input voltages, n n

a R ×∈R is the diagonal 
matrix of armature resistances, n n

a R ×∈L is the diagonal matrix of armature inductances, and n n
E R ×∈K  is the diagonal matrix 

of the back electromotive force (EMF) coefficients. 
Since dynamic equations of DC servomotors are considered here, the relationship between the robot joint and the motor-shaft 

can be represented as 
m
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where n nR ×∈r is a diagonal positive definite matrix representing the gear ratios for n joints. Since armature inductances are 
small and negligible, Eq. (4) can be expressed as [15] 
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Using Eq. (5) to eliminate θm and τm in Eq. (6) and then substituting for τ  using Eq. (2), the governed equation of n-link 
robot manipulator including actuator dynamics can be obtained as 
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According to Eq. (7), the armature input voltages are considering as control efforts, respectively. The detailed parameters of 
the robot manipulator and DC servomotors are given as Table II and Table III, respectively. 

 

TABLE  I 
DENAVIT-HARTENBERG PARAMETERS OF THE ROBOT IN FIG.1 

Link αo a d θo 
1 90 0 0 1θ  

2 0 2l  0 2θ  

3 0 3l  0 3θ  

4 0 4l  0 4θ  
 

TABLE II 
MANIPULATOR ROBOT PARAMETERS 

Link 1 2 3 4 
l (m) 1 0.5 0.4 0.3 

m (kg) 1 0.5 0.4 0.3 
 

TABLE III 
DC SERVO MOTORS PARAMETERS 

Motor 1 2 3 4 
Ra 6.51 6.51 6.51 6.51 
KE 0.7 0.7 0.7 0.7 
KT 0.5 0.5 0.5 0.5 

Bm 41064 −×
 

41064 −×
 

41064 −×
 

41064 −×
 Jm 0.2 0.2 0.2 0.2 

R 1:100 1:100 1:10 1:10 
Vt 24 24 24 24 

3.   Model Predictive Control 
Unlike in classical control methods, where the control actions are taken based on the past outputs of the system, the MPC is a 

model-based optimal controller, which uses predictions of the system output to calculate the control law [19, 20]. 
Based on measurements obtained at every sampling time k, the controller predicts the output of the system over prediction 

horizon NP in the future using the model of the system and determines the input over the control horizon NC ≤  NP such that a 
predefined cost function is minimized. 

To incorporate feedbacks, only the first member of the obtained input is applied to the system until the next sampling time 
[19]. Using the new measurement at the next sampling time, the whole procedure of prediction and optimization is repeated. 

From the theoretical point of view, the MPC algorithm can be expressed as 
))(min(arg kJu u=                                                                         (8) 

such that the following conditions are satisfied: 
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where j∈[0 , NP-1],  x and u are states and input of the system, x0 is the initial condition, and  fd and hd are the model of the 
system used for prediction. The notation a(m|n) indicates the value of a at instant m predicted at instant n. The intervals [xmin , 



xmax] and [umin , umax] stand for the lower and the upper bound of states and input, respectively. The cost function J is defined in 
terms of the predicted and the desired output of the system over the prediction horizon. MPC schemes that are based on 
nonlinear model or consider non-quadratic cost function and nonlinear constrains on inputs and states are called Nonlinear MPC 
[19].  

The optimization problem (8) must be solved at each sampling time k, yielding a sequence of optimal control laws 
as * *{ ( | ), , ( 1)}.uk K k N+ −u uK  For optimization, the sequential quadratic programming method is used in this paper [21]. 

 
 

4.   Prediction Model Using Artificial Neural Network 
As it was explained, a model of the system is needed for prediction in MPC. In this paper, a Multilayer Perceptron (MLP) is 

used for modeling nonlinear dynamics of the robot in MPC. Using the neural network for model prediction, no prior knowledge 
about system parameters is needed. The prediction is based on the input voltage, angular position, and angular velocity of joints 
at the current sampling time. The output of the predictor is the angular position of the joint at the next sampling time. Using this 
structure, a one-step-ahead prediction of joints position can be obtained. However, in the predictive control, multi-step 

predictions over the prediction horizon are needed. By applying one-step prediction recursively, multi-step prediction can be 
achieved. In this case, the outputs of the neural network are considered as inputs for the next step. Using the neural network 
recursively, high accuracy of one-step-ahead prediction is needed. For this reason, one neural network is implemented for every 
link of the robot to predict the position of every joint angle. The structure of the employed MLP is shows in Fig. 2. Transfer 
functions for the hidden and the output layer neurons are of tangent hyperbolic and linear types, respectively. The inputs are the 
angular position and the angular velocity of joints, and the input voltage of the ith joint at the current sampling time  
[vti(k), θ1(k), θ2(k), θ3(k), θ4(k), ∆θ1(k), ∆θ2(k), ∆θ3(k), ∆θ4(k)] and the output is θi(k+1), which refers to the ith joint position at 
the next sampling time.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Neural Network structure 
 
 

    The neural networks are trained offline first using the data gathered form the system. The main reason for this is that the 
weights of NNs are initialized with random numbers; hence, without any offline training the robot might collide with obstacles. 
The offline training does not need to be very accurate; just a rough familiarity of NNs with the robot behavior to avoid large 
initial tracking error and/or collision with obstacles suffices. It should be noted that the online training of NNs can cope with all 
changes in robot parameters, including the masse of links, the friction of joints and parameters of servomotors.  
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5.   Path Tracking and Obstacle Avoidance Using NMPC 
The purpose of the path tracking and obstacle avoidance of robot manipulators is to obtain a control law such that the end-

effector tracks a given geometry path in the Cartesian space and at the same time to avoid collision of robot links with obstacles. 
To achieve this purpose, the NMPC method is implemented in this paper. Block diagram of NMPC is shown in Fig. 3. 

According to the NMPC algorithm, an appropriate cost function must be determined in order to obtain the control law. 
For path tracking, the cost function must be directly related to the tracking error. On the other hand, the cost function for the 

obstacles avoidance must be inversely related to the distance between the obstacle and the manipulator. Hence, in this paper, the 
cost function is defined as   
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where DP is the Euclidean distance between the end-effector and the geometry path in the Cartesian space, DO is the minimum 
Euclidean distance between the manipulator and obstacles; moreover, Q  ≥0 and R≥ 0 are the weighting parameters. 

     
                                      Fig. 3 Block diagram of NMPC 

Notation a(m|n) in (10) indicates the value of a at the instant m predicted at instant n. The intervals [DPmin, DPmax] and [DOmin, 
DOmax] are the range of variations for DP and DO, respectively. According to the length of manipulator links, the value for DPmin 
and DPmax is 0 and 2.4 meter and the value of DOmin and DOmax is 0 and 1.2 meter, respectively. Using the cost function in (10), 
the two terms for the path tracking and the obstacle avoidance are normalized to [0  1]. 

Next, constrains in the optimization problem is considered. Considering the fact that the amplitude of input voltages is 
limited, one of the constrains is 

maxmin ttt VVV ≤≤                                                                                  (12) 

where  Vt min  and  Vt max stand for the lower and the upper bound of input voltages for servo DC motors, respectively       (-24 V 
and 24 V as Table III shows). 

Next, considering the fact that in singular configurations the joint velocities are infinite, the following constrain must be 
taken into account: 

maxmin θθθ &&& ≤≤                                                                                    (13) 

where minθ& and maxθ& are the lower and the upper bound of the joints velocities (which are -400 and 400 deg./s, considering the 
robot and motors parameters), respectively. 

By incorporating constrains (12) and (13) into the cost function, the optimization problem can be solved.  
 

6.   Simulation Results 
The simulated results of the proposed control method are presented in this section. A rectangular path in the Cartesian space 

along with obstacles inside the work space is considered. The developed neural network for every link consists of three layers: 9 
neurons in the input layer, 10 neurons in the hidden layer, and 1 neuron in the output layer. 

Simulation results for the case of sampling time of 0.5 sec., Np = 5, Nc = 1, without any changes in robot parameters are 
shown in Figs. 4 to 9.  

Figs. 10 and 11 show the results when an additional 20 kg mass at 25 sec.t = is added to the fourth link of the robot. 
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Fig. 4 Desired and actual end-effector path 

 

Fig. 5 Positions of manipulator joints 

 

Fig. 6 Velocities of manipulator joints 

 

Fig. 7 Input voltages of servo DC motors 



 

Fig. 8 Path following of a 4DOF manipulator with four obstacles on the workspace 

 
Fig. 9 The path tracking of Fig.8 from a different view angle 

 

Fig. 10 End-effector path tracking with sudden changes in the mass of link 4 

 

 
Fig. 11 Positions of manipulator joints  

 
The optimization problem is solved using the SQP method. For more information refer to the MATLAB routine “fmincon”.  
Fig. 12 shows the simulation runtime for the proposed method. As this figure shows, the runtime is mostly less than the 
sampling time. However, it should be noted that: 1) the simulations are performed in MATLAB software, which requires more 
time than a lower level computer program such as C++, 2) in simulations, solving the robot equations also incurs some 



computational time, which is not required in practice, 3) some aspects of computations, such training of NNs, can be processed 
in parallel. Hence, the simulation run time can be much less than Fig. 12. Therefore, in practice, the proposed method can be 
successfully applied to robot manipulators using conventional digital computers. 

 

7.   Conclusion  
In this paper, to achieve path tracking and obstacle avoidance for robotic manipulators, the NMPC method was employed.  

For this reason, two terms were introduced in the cost function, one for the tracking problem and one for the obstacle avoidance 
and by introducing constrains to joints velocities, singularities were avoided. Moreover, neural networks are employed for 
adaptive model prediction that can cope with changes in system parameters. The main advantage of NNs is that no prior 
knowledge about nonlinear equations of the robot or its parameters is needed. 
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where, li and mi (i=1,…,4) are the length and mass of the ith link, respectively, θi and iθ& are the angular position and the angular 
velocity of the ith joint, respectively, and ci = cos(θi ), si = sin(θi ),  cij = cos(θi +θj),  sij = sin(θi +θj), and so forth. 


