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Abstract— This paper presents a Nonlinear Model Predictive Control (NMPC) for redundant robotic arms. Using
NMPC, the end-effector of robotic arm tracks a predefined geometry path in the Cartesan spacein such a way that no
collision with obstacles in the workspace and no singular configurations for robot occurs. Nonlinear dynamic of the
robot including actuators dynamic is also considered. Moreover, the on-line tuning of the weights in NMPC is
performed using the fuzzy logic. The proposed method automatically adjusts the weights in cost function in order to
obtain good performance. Numerical simulations of a 4DOF redundant spatial manipulator actuated by DC
servomotor s shows effectiveness of the proposed method.

1. Introduction

Today, robotic manipulators are increasingly used in many tasks such as industry, medicine and space. One of the main
reasons for the development of manipulator robots is to replace human in doing long and repetitive operations and unhealthy
tasks. In particular, these robots are needed to track a predefined path in such a way that no collision with obstacles in the
environment occurs. High degrees of freedom for redundant manipulators lead to an infinity of possible joint positions for the
same pose of the end-effector. Hence, for a given end-effector path in the Cartesian space, the robot can track it in many
different configurations, among these, the collision free and singular free tracking must be selected. Finding feasible path for
joints of redundant manipulators for a given end-effector path is caled redundancy resolution [1]. Redundancy resolution and
obstacle avoidance are aready considered in papers. With gradient projection technique, redundancy can be solved considering
obstacle avoidance [2]. In task-priority redundancy resolution technique, the tasks are performed with the order of priority. Path
tracking is given the first priority and obstacle avoidance or singularity avoidance is given the second priority [3, 4]. This
technique is locally optimal solution that is suitable for real-time redundancy control but not for large number of tasks. The
generalized inverse Jacobin technique and extended Jacobin technique, which are used for redundancy solution, are time
consuming [5, 6, 7]. Optimization techniques, which minimize a cost function subject to constraints, like end-effector path
tracking and obstacle avoidance, are not suitable for on-line gpplications [4].

In this paper, Nonlinear Model Predictive Control (NMPC) method is presented for redundancy resolution considering
obstacles and singularity avoidance. Although Model Predictive Control (MPC) is not a new control method, works related to
manipulator robots using MPC islimited. Most of the related works are about joint space control and end-effector coordinating.
Thelinear MPCisusedin[8, 9, 10] and NMPC isused in [11, 12, 13, 14] for joint space control of manipulators.

In this paper, using NMPC, the input voltages of DC servomotors of joints are obtained in such away that the end-effector of
a redundant manipulator tracks a given path in the Cartesian space considering obstacles and singularity avoidance. Moreover,
using fuzzy logic an automatic mechanism for the on-line tuning of the weights for the path tracking and Obstacle avoidance
terms in the cost function is proposed.

This paper is organized as follows: Section 2 presents nonlinear dynamic of 4DOF spatial redundant manipulator including
the actuators dynamic. Section 3 describes the nonlinear predictive control. In Section 4, NMPC is implemented for path
tracking and obstacle avoidance of a 4DOF manipulator. Section 5 presents the proposed modified NMPC using fuzzy logic.
Conclusions are drawn in Section 6.

2. Manipulator Robot Dynamic

Schematic diagram of a 4DOF spatial redundant manipulator robot is shown in Fig. 1. According to Denavit-Hartenberg
parameters [15] of the shown robot in Table 1, the position of the end-effector in Cartesian space can be calculated in terms of
joint angles as fallows:
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Fig. 1 Schematic of a 4ADOF spatid mani pul ator

TABLE 1
DENAVIT-HARTENBERG PARAMETERS OF ROBOT FIG.1
Link o’ A d o°
1 90 0 0 a,
2 I, 0 d,
3 5 0 0,
4 |4 0 q4

The dynamic model of the robot manipulator can be obtained using the Lagrangian method as follows[15, 16]:
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where g is the angle of the i joint, M (@)T R™" is the symmetric and positive definite inertia matrix, C (q.4)T R is the
centrifuga and coriolis force vector, G (q) T R" isthe gravity vector, D ()1 R"isthe vector for joints friction of the links, t T R
"is the torque vector of joints, and n is the degree of freedom, which is equivalent to four for the robot considered in this paper.

The above matrix and vectors are as follows:
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where, [y and m; (i=1,...,4) are the length and mass of the i™ link, respectively, g; and ¢ are the angular position and the angular
|

velocity of theithjoint, and ¢, =cos(q;), s =sin(q;), G; = cos(q +0;) and s; = sin(q; +0}).
Friction for joint i isas follow [15]:

D(i) = Dydk + Dy son(dh) ©)
where D, is the coefficient of the viscous friction and Dy is the coefficient of the dynamic friction. The dynamics of the
armature-controlled DC servomotorsthat drive the links are expressed in the following form [15]:
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where tJ R"is the vector of electromagnetic torque, K{ R""is the diagona matrix of the motor torque constant, i R"isthe
vector of armature currents, J,1 R"" is the diagona matrix of the moment inertia, Bl R" " is the diagona matrix of torsional
damping coefficients, .4y &1 R" denote the vectors of motor shaft positions, velocities and acceleration, respectively, tm

T Ris the vector of load torque, Vi R" is the vector of armature input voltages, RJ R" " is the diagonal matrix of armature

resistance, Ll R" " is the diagonal matrix of armature inductance and K¢l R" " is the diagonal matrix of the back electromotive
force (EMF) coefficients.

In order to apply the DC servomotors for actuating an n-link robot manipulator, arelationship between the robot joint and the
motor-shaft can be represented as.
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where rl R"" is a diagona positive definite matrix of the geer ratios for n joints. According to the fact that the armature

inductance is small and negligible, the Eq. (7) can be expressed as follow [15]:
KeKr Kr

Yy +t = Rth )

Jon + (B +

Using Eqg. (8) to eliminate g, and t,in (9) and then subgtituting for t from (2), the governed equation of Nn-link robot
manipulator including actuator dynamics can be obtained as:

(Jm+r2M)éF+(Bm+%)&+r2(C+G+D)=%f t (10)

According to Eqg., the armature input voltages are considering as control effort. The detailed parameters of the robot
manipulator and DC servomotors are given as Table 2 and Table 3, respectively.

TABLE 2
MANIPULATOR ROBOT PARAMETERS
Link 1 2 3 4
I (m) 1 05 04 0.3
m (kg) 1 05 04 03
TABLE 3
Dc SERVO MOTORS PARAMETERS
motor 1 2 3 4
Ra 6.51 6.51 6.51 6.51
Ke 0.7 0.7 0.7 0.7
K+ 05 05 05 05
Bm 64104 | 64104 | 647104 | o4 10%
N 0.2 0.2 0.2 0.2
r 1:100 1:100 1:10 1:10
Vi 24 24 24 24

3. Model Predictive Control

Unlike classical control schemes, in which the control actions are taken based on the past output of the system, the MPC isa
model-based optimal controller, which uses predictions of the systems output to calcul ate the control law [17, 18].

At every sampling time k, based on measurements obtained at time k, the controller predicts the output of the system over
prediction horizon Np in future using model of the system and determines the input over the control horizon N¢ < Np, such that a

predefined cost function is minimized.

To incorporate feedback, only the first member of the obtained input is gpplied to system until the next sampling time [17].
Using the new measurement at next sampling time, the whole procedure of prediction and optimization is repeated.

From the theoretical point of view, the MPC algorithm can be expressed as follow:

u=arg ,min(J(k)) (11)

such that
X(k k) =X
u(k+jlk)) =u(k+N,|K)), j* Nc
X(k+j+1|k) = fy(x(k + j [K),u(k + j |k))
y(k +j+1]k) = hy(x(k + j +1[k))
Xerin £ X(K+ j +1]K) £ Xy
Upmin EU(K+ J [K) £ Uy

(12)



where i [0, Np-1], x and u are states and input of the system and the notation a(mjn) indicates the value of a at the instant m
predicted at instant n, X, is the initial condition and fy and hy are the model of the system used for prediction. [Xmin , Xmax] @nd
[Umin , Umax] Stand for the lower and the upper bound of states and input, respectively. The cost function J is defined in terms of
the predicted and the desired output of the system over the prediction horizon. MPC schemes that are based on nonlinear model
or consder non-quadratic cost function and nonlinear constrains on the inputs and states are called Nonlinear MPC [17].

The optimization problem (11) must be solved at each sampling time k, yielding a sequence of optimal control law

as{u’ (k| K),K,u"(k + N, - 1)} . For optimization, the SQP method is used in this paper [19].

4. Path Tracking and Obstacle Avoidance Using NMPC

The purpose of the path tracking and obstacle avoidance of robot manipulators is to obtain a control law such that the end-
effector tracks a given geometry path in the Cartesian space and &t the same time collision between the end-effector and linksis
avoided. To achieve this purpose, the NMPC isimplemented in this section. Block diagram of NMPC isshown in Fig. 2.

According to the NMPC algorithm, an appropriate cost function must be determined in order to obtain the control law.
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Fig. 2 Block diagram of NMPC

For path tracking, the cost function must have direct relation with the tracking error between the end-effector coordination
and the given path in the Cartesan space; on the other hand, for obstacles avoidance the cost function must have inverse
relation with the distance between the obstacle and the manipulator. One of the proper candidates for the cost function can be
introduced as:

Np
J=3 Do(k+j|K)QDp(k+ j[K)+ R 13
J_a:.l p(K+ ] K)QDp(k + j[k) Do+ Do+ 111 (13)
where Dp is the Euclidean distance between the end-effector and the geometry path in the Cartesian space, Do is the minimum
Euclidean distance between the manipulator and obstacles, notation a(m|n) indicates the value of a at the instant m predicted at
ingtant n and Q >0, R>0 are the weighting parameters.

According to Eq. (13), the path tracking term of the cost function is described as distance but the Obstacle avoidance term of
the cost function is described as the inverse of distance. Hence, it is important to notice that the distance is bounded in the
workspace, but the inverse of the distance is unbounded. Therefore, combination of these two inconsistent terms as a cost
function is not appropriate for an optimization problem. To tackle this problem, these two terms are normalized to [0 1] using a
nonlinear map. Hence, the modified cost function takes the following form:

_ gP eDP(k+j|k) - eDPm'n e' Do(k+j|k) - e' DOmax
J=a Q
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where [Dpmin . Dpmax] @d [Domin, Domax] &€ the range of variations for Dp and Do, respectively. According to the length of

manipulator links the value for Dpnin and Dppax 1S 0 and 2.4 meter and the value of Domin and Domex iS 0 @and 1.2 meter.
Predictive controller discussed in this paper uses a nonlinear dynamic model of the manipulator in the optimization of the

cost function. Substituting (q (k +1) -q (K)) /T forcf in the dynamic Eq. (10), aone-step ahead prediction for joints angle can be
expressed as:



q(k+1 = f4@(k), (k) (15)

where k is the sampling time and T is the sampling rate, which is equivaent to 0.5 s in this paper. Using forward kinematics as
Eq. (1), a one-step ahead prediction of the end-effector position can be obtained. However, in the predictive control, it is used
for multi-step predictions over prediction horizon by applying one-step prediction recursively.

Next, congrains in the optimization problem is considered. Considering the fact that the amplitude of input voltages is
limited, one of the constrainsis:

Verin £ Ve £ Vi (16)

where Vimin ad Vime Stand for the lower and the upper bound of input voltages of servo DC motors, respectively (-24 and 24
as Table 3 shows).

Next, consdering the fact that in a singular configuration, for the case of limited velocity for the end-effector, the joint
velocities are infinite. Therefore, the following constrain must be taken into account:

Grin £F £ 17)

where cf‘mm and cf‘max are the lower and the upper bound of the joints velocity, respectively, which are -400 and 400 degree/s,
considering the robot and motors parameters.

By incorporating congtrains (16) and (17) into the cost function, the optimization problem can be solved. Simulation results
for arectangular path in the Cartesian space with obstacles inside the work space are shown in figures 3 to 7. In this case, Np =
5,Nc=1,Q=10andR=0.8.

Figures 8 to 10 show the case, where the obstacle is located on the path. In this case, Np = 5, Nc = 1. However, the best results
are obtained when Q = 10 and R = 1.3. That is, when the coordinates of obstacles are changed, the weights in the cost function
must be customized accordingly.
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Fig. 9 Path following of a 4DOF manipul ator with obstacles on the workspace
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manipulator is inside this region,
operations are shown in figures 11 to 14 and Tables4 and 5.
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5. Path Tracking and Obstacle Avoidance Using Fuzzy NMPC

In the previous section, it was observed that for different paths and different positions of obstacles, the weights Q and R must
be changed and finetuned in order to produce satisfactory results. That is, following the desired path as closely as possible and
avoiding the obstacles at the same time. To provide a proper solution to this problem, fuzzy logic is employed in this paper for
the on-line tuning of these weights. The proposed fuzzy system uses minimum distance between the manipulator and the
obstacle and the rate of change of this distance as the inputs. The outputs of the fuzzy system are the weights Q and R.

Ris increased and Q is decreased adaptively.

TABLE 4: Fuzzy OPERATIONS

To design the fuzzy system, a boundary around each obstacle is considered in such a way that the control algorithm does not
care about obstacles unless the end-effector or any links of the manipulator enter this boundary region. Parameters of fuzzy
systems are tuned in such a way that when the manipulator is outside the obstacle regions, R is equa to zero and when the
Fuzzy rules, membership functions, and fuzzy

And OR Implication | Aggregation

Defuzzification

min max Prod max

Lom




TABLE5: Fuzzy RULES

If D, =Very Far & B, =Positive Then Q=Very Big & R=Very Small

If D, =Very Far & B, =Zero Then Q=Very Big& R=Very Small

If Do =Very Far & éo =Negative Then Q=Very Big & R=Very Small

If D= Far & b, =Postive Then Q= Very Big & R=Very Small
o o

If D.=Far & B, =Zero Then Q= Very Big& R=Very Small
o o

If D, =Far & i, =Negative Then Q= Big & R= Small

If Do =Medium & [&o =Positive Then Q=Big & R=Very Smdl

If DO:Medium& [&o =Zero Then Q= Big & R= Small

If D, =Medium & i, =Negative Then Q=Medium & R=Medium

If Do =Near & [&o =Positive Then Q= Big & R= Small

If D, =Near & [&o =Zero Then Q= Medium & R=Big

If D, =Near & i, =Negative Then Q=Small & R=Big

If Do =Very Near & [&o =Positive Then Q= Medium & R= Medium

If D,=Very Near & B, =Zero Then Q= Very small & R= Very Big

If D =VeryNear & & =Negative Then Q=Very Small & R=Very Big
o o

Using the proposed fuzzy system, when the distance between the manipulator and the obstacleis more than 0.2 m,R=0and Q
=10. For distanceslessthan 0.2 m,5<Q<10and0<R< 5.

Simulation results of the proposed fuzzy NMPC are shown in figures 15 to 20. As these figures show, the manipulator can
follow the desired path with better accuracy as compared to the previous case. Moreover, Fig. 20 shows that the fuzzy system
effectively changes the weighting parameters in the optimization processfor better path following and obstacle avoidance.
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6. Conclusion

To achieve better path tracking and obstacl e avoidance for robotic arms, the NMPC method was proposed in this paper. For
this reason, two terms were introduced in the cost function, one for the tracking problem and the other one for the obstacle
avoidance. Moreover, by introducing constrains to the joints velocities, singularities were avoided. Furthermore, on-line tuning
of the weighting factors in NMPC was achieved using fuzzy logic. The proposed fuzzy system automatically adjusts the path
tracking and obstecle avoidance weights in the cost function for obtaining better performance. Using the tuning mechanism,
obstacles do not affect performance of the manipulator unless they enter the predefined boundary regions around obstacles.
Future works in this area include considering moving obstacles and robustness of the method against changes in the system
parameters.
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