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Abstract— This paper presents a Nonlinear Model Predictive Control (NMPC) for redundant robotic arms. Using 
NMPC, the end-effector of robotic arm tracks a predefined geometry path in the Cartesian space in such a way that no 
collision with obstacles in the workspace and no singular configurations for robot occurs. Nonlinear dynamic of the 
robot including actuators dynamic is also considered. Moreover, the on-line tuning of the weights in NMPC is 
performed using the fuzzy logic. The proposed method automatically adjusts the weights in cost function in order to 
obtain good performance. Numerical simulations of a 4DOF redundant spatial manipulator actuated by DC 
servomotors shows effectiveness of the proposed method. 
 

1.  Introduction 
Today, robotic manipulators are increasingly used in many tasks such as industry, medicine and space. One of the main 

reasons for the development of manipulator robots is to replace human in doing long and repetitive operations and unhealthy 
tasks. In particular, these robots are needed to track a predefined path in such a way that no collision with obstacles in the 
environment occurs. High degrees of freedom for redundant manipulators lead to an infinity of possible joint positions for the 
same pose of the end-effector. Hence, for a given end-effector path in the Cartesian space, the robot can track it in many 
different configurations, among these, the collision free and singular free tracking must be selected. Finding feasible path for 
joints of redundant manipulators for a given end-effector path is called redundancy resolution [1]. Redundancy resolution and 
obstacle avoidance are already considered in papers. With gradient projection technique, redundancy can be solved considering 
obstacle avoidance [2]. In task-priority redundancy resolution technique, the tasks are performed with the order of priority. Path 
tracking is given the first priority and obstacle avoidance or singularity avoidance is given the second priority [3, 4]. This 
technique is locally optimal solution that is suitable for real-time redundancy control but not for large number of tasks. The 
generalized inverse Jacobin technique and extended Jacobin technique, which are used for redundancy solution, are time 
consuming [5, 6, 7]. Optimization techniques, which minimize a cost function subject to constraints, like end-effector path 
tracking and obstacle avoidance, are not suitable for on-line applications [4]. 

In this paper, Nonlinear Model Predictive Control (NMPC) method is presented for redundancy resolution considering 
obstacles and singularity avoidance. Although Model Predictive Control (MPC) is not a new control method, works related to 
manipulator robots using MPC is limited. Most of the related works are about joint space control and end-effector coordinating. 
The linear MPC is used in [8, 9, 10] and NMPC is used in [11, 12, 13, 14] for joint space control of manipulators.  

In this paper, using NMPC, the input voltages of DC servomotors of joints are obtained in such a way that the end-effector of 
a redundant manipulator tracks a given path in the Cartesian space considering obstacles and singularity avoidance. Moreover, 
using fuzzy logic an automatic mechanism for the on-line tuning of the weights for the path tracking and Obstacle avoidance 
terms in the cost function is proposed. 

This paper is organized as follows: Section 2 presents nonlinear dynamic of 4DOF spatial redundant manipulator including 
the actuators dynamic. Section 3 describes the nonlinear predictive control. In Section 4, NMPC is implemented for path 
tracking and obstacle avoidance of a 4DOF manipulator. Section 5 presents the proposed modified NMPC using fuzzy logic. 
Conclusions are drawn in Section 6. 

 

2.  Manipulator Robot Dynamic 
Schematic diagram of a 4DOF spatial redundant manipulator robot is shown in Fig. 1. According to Denavit-Hartenberg 

parameters [15] of the shown robot in Table 1, the position of the end-effector in Cartesian space can be calculated in terms of 
joint angles as fallows: 
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Fig. 1 Schematic of a 4DOF spatial manipulator 

TABLE  1 
DENAVIT-HARTENBERG PARAMETERS OF ROBOT FIG.1 

Link αo A d θo 
1 90 0 0 1θ  

2 0 2l  0 2θ  

3 0 3l  0 3θ  

4 0 4l  0 4θ  
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The dynamic model of the robot manipulator can be obtained using the Lagrangian method as follows [15, 16]: 

τθθθθθθ =+++ )()(),()( GDCM &&&&                                                               (2) 

where θi is the angle of the ith joint, M )(θ ∈Rn×n is the symmetric and positive definite inertia matrix, C ),( θθ & ∈Rn is the 
centrifugal and coriolis force vector, G )(θ ∈Rn is the gravity vector, D )(θ& ∈ Rn is the vector for joints friction of the links, τ ∈R 

n is the torque vector of joints, and n is the degree of freedom, which is equivalent to four for the robot considered in this paper. 
The above matrix and vectors are as follows: 
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where, li and mi (i=1,…,4) are the length and mass of the ith link, respectively, θi and iθ& are the angular position and the angular 
velocity of the ith joint, and ci = cos(θi ), si = sin(θi ),  cij = cos(θi +θj)  and  sij = sin(θi +θj). 
    Friction for joint i is as follow [15]: 

)sgn()( idiV DDiD θθ && +=                                                                               (6) 

 where Dv is the coefficient of the viscous friction and Dd is the coefficient of the dynamic friction. The dynamics of the 
armature-controlled DC servomotors that drive the links are expressed in the following form [15]: 
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where τe∈Rn is the vector of electromagnetic torque, KT∈Rn×n is the diagonal matrix of the motor torque constant, ia∈Rn is the 
vector of armature currents, Jm∈Rn×n is the diagonal matrix of the moment inertia, Bm∈Rn×n is the diagonal matrix of torsional 
damping coefficients, nRmmm ∈θθθ &&& ,, denote the vectors of motor shaft positions, velocities and acceleration, respectively, τm 

∈ Rn is the vector of load torque, Vt∈Rn is the vector of armature input voltages, Ra∈Rn×n is the diagonal matrix of armature 
resistance, La∈Rn×n is the diagonal matrix of armature inductance and KE∈Rn×n is the diagonal matrix of the back electromotive 
force (EMF) coefficients. 

In order to apply the DC servomotors for actuating an n-link robot manipulator, a relationship between the robot joint and the 
motor-shaft can be represented as: 
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m

r
τθ

θ τ
= =                                                                                         (8) 

where r∈Rn×n is a diagonal positive definite matrix of the gear ratios for n joints. According to the fact that the armature 
inductance is small and negligible, the Eq. (7) can be expressed as follow [15]: 
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Using Eq. (8) to eliminate θm and τm in (9) and then substituting for τ  from (2), the governed equation of n-link robot 
manipulator including actuator dynamics can be obtained as:  
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According to Eq., the armature input voltages are considering as control effort. The detailed parameters of the robot 
manipulator and DC servomotors are given as Table 2 and Table 3, respectively. 

 

TABLE 2 
MANIPULATOR ROBOT PARAMETERS 

Link 1 2 3 4 
l (m) 1 0.5 0.4 0.3 

m (kg) 1 0.5 0.4 0.3 

TABLE 3 
DC SERVO MOTORS PARAMETERS 

motor 1 2 3 4 
Ra 6.51 6.51 6.51 6.51 
KE 0.7 0.7 0.7 0.7 
KT 0.5 0.5 0.5 0.5 

Bm 41064 −×  41064 −×  41064 −×  41064 −×  
Jm 0.2 0.2 0.2 0.2 
r 1:100 1:100 1:10 1:10 
Vt 24 24 24 24 

3.  Model Predictive Control 
Unlike classical control schemes, in which the control actions are taken based on the past output of the system, the MPC is a 

model-based optimal controller, which uses predictions of the systems output to calculate the control law [17, 18]. 
At every sampling time k, based on measurements obtained at time k, the controller predicts the output of the system over 

prediction horizon NP in future using model of the system and determines the input over the control horizon NC ≤  NP, such that a 
predefined cost function is minimized. 

To incorporate feedback, only the first member of the obtained input is applied to system until the next sampling time [17]. 
Using the new measurement at next sampling time, the whole procedure of prediction and optimization is repeated. 

From the theoretical point of view, the MPC algorithm can be expressed as follow: 

))(min(arg kJu u=                                                                              (11) 
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where j∈[0 , NP-1],  x and u are states and input of the system and the notation a(m|n) indicates the value of a  at the instant m 
predicted at instant n, x0 is the initial condition and  fd and hd are the model of the system used for prediction.  [xmin , xmax] and 
[umin , umax] stand for the lower and the upper bound of states and input, respectively. The cost function J is defined in terms of 
the predicted and the desired output of the system over the prediction horizon. MPC schemes that are based on nonlinear model 
or consider non-quadratic cost function and nonlinear constrains on the inputs and states are called Nonlinear MPC [17].  

The optimization problem (11) must be solved at each sampling time k, yielding a sequence of optimal control law 
as * *{ ( | ), , ( 1)}uk K k N+ −u uK . For optimization, the SQP method is used in this paper [19]. 

 

4.  Path Tracking and Obstacle Avoidance Using NMPC 
The purpose of the path tracking and obstacle avoidance of robot manipulators is to obtain a control law such that the end-

effector tracks a given geometry path in the Cartesian space and at the same time collision between the end-effector and links is 
avoided. To achieve this purpose, the NMPC is implemented in this section. Block diagram of NMPC is shown in Fig. 2. 

According to the NMPC algorithm, an appropriate cost function must be determined in order to obtain the control law. 
 

 
                                      Fig. 2 Block diagram of NMPC 

For path tracking, the cost function must have direct relation with the tracking error between the end-effector coordination 
and the given path in the Cartesian space; on the other hand, for obstacles avoidance the cost function must have inverse 
relation with the distance between the obstacle and the manipulator. One of the proper candidates for the cost function can be 
introduced as: 

∑
= ++

+++=
PN

j OO
PP kjkDkjkD

RkjkQDkjkDJ
1 )|()|(

)|()|(                                              (13) 

 where DP is the Euclidean distance between the end-effector and the geometry path in  the Cartesian space, DO is the minimum 
Euclidean distance between the manipulator and obstacles, notation a(m|n) indicates the value of a at the instant m predicted at 
instant n and Q ≥ 0, R ≥ 0 are the weighting parameters. 

According to Eq. (13), the path tracking term of the cost function is described as distance but the Obstacle avoidance term of 
the cost function is described as the inverse of distance. Hence, it is important to notice that the distance is bounded in the 
workspace, but the inverse of the distance is unbounded. Therefore, combination of these two inconsistent terms as a cost 
function is not appropriate for an optimization problem. To tackle this problem, these two terms are normalized to [0 1] using a 
nonlinear map. Hence, the modified cost function takes the following form: 
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where [DPmin , DPmax] and [DOmin , DOmax] are the range of variations for DP and DO, respectively. According to the length of 
manipulator links the value for DPmin and DPmax is 0 and 2.4 meter and the value of DOmin and DOmax is 0 and 1.2 meter. 

Predictive controller discussed in this paper uses a nonlinear dynamic model of the manipulator in the optimization of the 
cost function. Substituting (θ (k +1) -θ (k)) /T forθ&  in the dynamic Eq. (10), a one-step ahead prediction for joints angle can be 
expressed as: 
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where k is the sampling time and T is the sampling rate, which is equivalent to 0.5 s in this paper. Using forward kinematics as 
Eq. (1), a one-step ahead prediction of the end-effector position can be obtained. However, in the predictive control, it is used 
for multi-step predictions over prediction horizon by applying one-step prediction recursively. 

Next, constrains in the optimization problem is considered. Considering the fact that the amplitude of input voltages is 
limited, one of the constrains is: 

maxmin ttt VVV ≤≤                                                                                  (16) 

where  Vt min  and  Vt max stand for the lower and the upper bound of input voltages of servo DC motors, respectively (-24 and 24 
as Table 3 shows). 

Next, considering the fact that in a singular configuration, for the case of limited velocity for the end-effector, the joint 
velocities are infinite. Therefore, the following constrain must be taken into account: 

maxmin θθθ &&& ≤≤                                                                                   (17) 

where minθ& and maxθ& are the lower and the upper bound of the joints velocity, respectively, which are -400 and 400 degree/s, 
considering the robot and motors parameters. 

By incorporating constrains (16) and (17) into the cost function, the optimization problem can be solved. Simulation results 
for a rectangular path in the Cartesian space with obstacles inside the work space are shown in figures 3 to 7. In this case, NP = 
5, NC = 1, Q = 10 and R = 0.8. 
Figures 8 to 10 show the case, where the obstacle is located on the path. In this case, NP = 5, NC = 1. However, the best results 
are obtained when Q = 10 and R = 1.3. That is, when the coordinates of obstacles are changed, the weights in the cost function 
must be customized accordingly. 
 
 

 
Fig. 3 Desired and actual end-effector path 

 
Fig. 4 Positions of manipulator joints 



 
Fig. 5 Velocities of manipulator joints 

 
Fig. 6 Input voltages of servo DC motors 

 
Fig. 7 Path following of a 4DOF manipulator with obstacles on the workspace 

 
Fig. 8 Desired and actual end-effector path 



 
Fig. 9 Path following of a 4DOF manipulator with obstacles on the workspace 

 
Fig. 10 Positions of manipulator joints 

 
Fig. 11 Membership functions of distance 

 
Fig. 12 Membership functions of distance variation 



 
Fig. 13 Membership functions of weight Q 

 
Fig. 14 Membership functions of weight R 

 
 
 

5.  Path Tracking and Obstacle Avoidance  Using Fuzzy NMPC 
    In the previous section, it was observed that for different paths and different positions of obstacles, the weights Q and R must 
be changed and finetuned in order to produce satisfactory results. That is, following the desired path as closely as possible and 
avoiding the obstacles at the same time. To provide a proper solution to this problem, fuzzy logic is employed in this paper for 
the on-line tuning of these weights. The proposed fuzzy system uses minimum distance between the manipulator and the 
obstacle and the rate of change of this distance as the inputs. The outputs of the fuzzy system are the weights Q and R. 

To design the fuzzy system, a boundary around each obstacle is considered in such a way that the control algorithm does not 
care about obstacles unless the end-effector or any links of the manipulator enter this boundary region. Parameters of fuzzy 
systems are tuned in such a way that when the manipulator is outside the obstacle regions, R is equal to zero and when the 
manipulator is inside this region,   R is increased and Q is decreased adaptively. Fuzzy rules, membership functions, and fuzzy 
operations are shown in figures 11 to 14 and Tables 4 and 5. 

 
 

TABLE 4: FUZZY OPERATIONS 

And OR Implication Aggregation Defuzzification 

min max Prod max Lom 

 

 
 
 
 



TABLE 5: FUZZY RULES 

If OD =Very Far & OD& =Positive Then Q=Very Big & R=Very Small 

If OD =Very Far & OD& =Zero Then Q=Very Big & R=Very Small 

If OD =Very Far & OD& =Negative Then Q=Very Big & R=Very Small 

If OD = Far & OD& =Positive Then Q= Very Big & R= Very Small 

If OD =Far & OD& =Zero Then Q= Very Big & R= Very Small 

If OD =Far & OD& =Negative Then Q= Big & R= Small 

If OD =Medium & OD& =Positive Then Q= Big & R= Very Small 

If OD =Medium & OD& =Zero Then Q=  Big & R=  Small 

If OD =Medium & OD& =Negative Then Q=Medium & R=Medium 

If OD =Near & OD& =Positive Then Q= Big & R= Small 

If OD =Near & OD& =Zero Then Q=  Medium & R= Big 

If OD =Near & OD& =Negative Then Q=Small & R=Big 

If OD =Very Near & OD& =Positive Then Q= Medium & R= Medium 
If OD =Very Near & OD& =Zero Then Q= Very small & R= Very Big 

If OD =VeryNear & OD& =Negative Then Q=Very Small & R=Very Big 
 
Using the proposed fuzzy system, when the distance between the manipulator and the obstacle is more than 0.2 m, R = 0 and Q 
= 10. For distances less than 0.2 m, 5 ≤ Q < 10 and 0 < R   ≤ 5. 
Simulation results of the proposed fuzzy NMPC are shown in figures 15 to 20. As these figures show, the manipulator can 
follow the desired path with better accuracy as compared to the previous case. Moreover, Fig. 20 shows that the fuzzy system 
effectively changes the weighting parameters in the optimization process for better path following and obstacle avoidance. 

 
Fig. 15 Desired and actual end-effector path 

 
Fig. 16 Positions of manipulator joints 



 
Fig. 17 Velocities of manipulator joints 

 
Fig. 18 Path following of a 4DOF manipulator with obstacles on the workspace 

 
Fig. 19 Path following of a 4DOF manipulator with obstacles on the workspace 

 

Fig. 20 Tuning of weights Q and R in cost function 

 



6.  Conclusion  
To achieve better path tracking and obstacle avoidance for robotic arms, the NMPC method was proposed in this paper.  For 

this reason, two terms were introduced in the cost function, one for the tracking problem and the other one for the obstacle 
avoidance. Moreover, by introducing constrains to the joints velocities, singularities were avoided. Furthermore, on-line tuning 
of the weighting factors in NMPC was achieved using fuzzy logic. The proposed fuzzy system automatically adjusts the path 
tracking and obstacle avoidance weights in the cost function for obtaining better performance. Using the tuning mechanism, 
obstacles do not affect performance of the manipulator unless they enter the predefined boundary regions around obstacles. 
Future works in this area include considering moving obstacles and robustness of the method against changes in the system 
parameters. 
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