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Abstract— The delay-independent robust absolute stability of 
uncertain Lur'e systems with multiple time-delays for both the 
time-varying and time-invariant sector bounded nonlinearities is 
considered in this paper. Based on the Lyapunov-Krasovskii 
stability theory and the linear matrix inequality (LMI) approach, 
some delay-independent sufficient conditions for the robust 
absolute stability are derived and are expressed as the feasibility 
problem of a certain LMI system. Finally, some examples are 
given to illustrate the proposed results. 
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I. INTRODUCTION 

It is well known that many nonlinear control systems can be 
represented as feedback connection of a linear dynamical 
system and a nonlinear element, where the nonlinear element 
satisfies certain sector constraints [1]. Based on these classes 
of nonlinear systems, the notion of absolute stability was 
introduced by Lur’e [2]; since then, the problem of the 
absolute stability of Lur’e system has been widely studied for 
several decades [3--6]. 

Time-delays appear in many real engineering systems. 
When time-delays appear in a dynamic system, behavior 
analysis of such systems becomes more complex. The 
existence of time-delays is often a source of instability and 
performance degradation [7]. The existing stability criteria for 
time-delay systems can be classified into two types: the delay-
independent and the delay-dependent [7]. Delay-independent 
conditions are useful for the systems that are stable for any 
value of time-delays, whereas delay-dependent conditions 
provide stability for systems that are stable for limited time-
delays. 

For the case of time-delayed Lur’e systems without 
uncertainty, some remarkable results have been developed in 
literatures. In [8], the problem of delay-independent absolute 
stability has been considered. Delay-dependent absolute 
stability conditions of Lur’e systems with multiple time delay 
and nonlinearities have been developed in [9--11]. In addition, 
some researchers focus on Lur’e systems with time-varying 
delays [12, 13]. 

Recently, practical considerations such as model 
uncertainties and time delays are considered for stability 
analysis of Lur’e systems [14--19].  

This paper discusses the problem of delay-independent 
absolute stability of uncertain Lur’e systems with multiple 
time-delays.  Based on the Lyapunov-Krasovskii stability 
theory and the Linear Matrix Inequality (LMI) approach, some 
delay-independent sufficient conditions for the robust absolute 
stability are derived and expressed as the feasibility problem 
of certain LMI systems. Both cases with the time-varying and 
time-invariant nonlinearities are considered. Finally, some 
examples are given to validate the results. 

 
Notations. Through this paper, n�  denotes the n-

dimensional Euclidean space and n m×�  is the set of real n m×  
matrices. 0>P  means that P  is a real positive definite 
symmetric matrix. [ ],0h−�  denotes space of continuous 
functions defined on ,0[ ]h− , and I  is the Identity matrix with 
appropriate dimensions. 1diag ,{ , }mW W� refers to a real 
matrix with diagonal elements 1 ,,W W� . TA  denotes the 
transpose of the real matrix A . Symmetric terms in a 
symmetric matrix are denoted by * . 

II. PROBLEM FORMULATION AND PRELIMINARIES 
Consider the uncertain Lur’e system with multiple time-

delays as 
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where ( ) nt ∈x �  denotes the state vector, ( ) pt ∈� �  is the 
input, ( ) pt ∈z �  is the output, and ( ) ([ ,0], )nt hφ ∈� �   is a 
continuous vector-valued initial function; ( )0 1, ,ih i m≥ = �  
are time-delays, and M and ( )1, , p n

i i m ×= ∈N � �  are 
known real constant matrices; ( ), 1, , n n

i i m ×= ∈A B � � , and 
n p×∈D �  are time-varying matrices with the following 
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structures: 
( ) ( )

( ) ( )
, ,

, 1, ,i i i

t t

t i m

= + Δ = + Δ

= + Δ =

A A A D D D

B B B �
                     (2) 

where A, ( )1, ,i i m=B � , and D are known real constant 
matrices. ( )tΔA , ( )( ) 1, ,i t i mΔ =B � , and ( )tΔD  are norm 
bounded parameter uncertainties and are assumed to be of the 
form 

( ) ( ) ( ) ( ) ( )[ ]1 1, , , , , , , , ,m mt t t t tΔ Δ Δ Δ =� �	 
A B B D LF E E E H� � (3) 

where ( ), , 1, ,i i m=L E E � , and H are known real constant 
matrices with appropriate dimensions and ( ) q kt ×∈F �  is the 
unknown time-varying real matrix satisfying  

( ) ( )T t t ≤F F I .                               (4) 

The nonlinear function ( , ( )) pt t ∈� z �  in (1) is piecewise 
continuous in t, globally Lipschitz in ( )tz , ( ),0 0t =� , and 
satisfies the following sector condition for any 0t ≥  and 

( ) pt ∈z � : 

( )( ) ( ) ( )( ) ( )1 2, , 0
T

t t t t t t� � � �− − ≤	 
 	 
z K z z K zϕ ϕ .     (5) 

Such a nonlinear function is said to belong to the sector bound 
1 2[ , ]K K . 

 
Definition 1. The nonlinear delay system (1) is said to be 

robustly absolutely stable in the sector 1 2[ , ]K K  if it is 
globally uniformly asymptotically stable for any nonlinear 
function ( ( ))t� z  satisfying (0) 0=�  and (5) for all admissible 
uncertainties [18]. 
 

Lemma 1. [20] For given matrices T=� � , U , and V  
with appropriate dimensions, inequality 

( ) ( ) 0T T Tt t+ + <� UF V V F U ,                    (6)  

holds for all ( ) ( )T t t ≤F F I  if and only if there exists 0>δ  
such that 

1 0T Tδ δ−+ + <� UU V V .                        (7) 
 

Lemma 2. (Schur complement [21]) Let the symmetric 
matrix M  be partitioned as 

T

� �
= � �
	 


X Y
M

Y Z
, 

with X  and Z  being symmetric matrices. Then, 0>M  if 
and only if 

1

0,
0.T−

>�
� − >�

Z
X YZ Y

                              (8) 

Based on these lemmas, the following section will show the 
main results, proposed in this paper. 

III. MAIN RESULTS 
For the first step, consider the case that the nonlinear 

function ( , ( ))t t� z  belongs to the sector [0, ]K . Hence, it 
must satisfy 

( )( ) ( )( ) ( ), , 0T t t t t tϕ ϕ� �− ≤	 
z z Kz ,              (9) 

where 0>K . 

Theorem 1. The nonlinear delay system (1) with the 
nonlinear function ( , ( ))t t� z  satisfying (9) and ( ),0 0t =� , is 
robustly absolutely stable if there exist scalars 0γ > , 0δ > , 
and symmetric matrices 0>P , 0i >Q ( )1, ,i m= �  such 
that the following LMI holds: 
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 (10) 

where 

( )
1

m
T T

i
i

δ
=

Γ = + + +�A P PA Q E E , 

T T Tγ δΨ = − +PD M K E H , 2 Tγ δ= − +I H H	 . 

T T T
i i iγ δΨ = − +N K E H , ( )1, ,i m= � . 

 

Proof. Let select the Lyapunov-Krasovskii functional 
candidate as 

( ) ( ) ( ) ( ) ( )
1 j

tm
T T

t j
j t h

V t t s s ds
= −

= +� 
x x Px x Q x .    (11) 

where tx  is defined as ( )t t θ= +x x , 
1

[ max{ },0]ii m
h

≤ ≤
∈ −θ . 

Taking the time derivative of  ( )tV x  yields 
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Using ( ) ( , ( ))t t t= −� � z  as in (1), the sector condition (9) 
can be written as 

( ) ( ) ( ) 0T t t t− + ≥� �	 
� � Kz                      (13) 

where ( )tz  and ( )t�  are defined in (1). Hence, ( )tV x�  can be 
expressed as 
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where γ  is the same as in (10). Substituting ( )tx�  from (1) into 
(14) and considering (11)--(14), it is straightforward to show 
that 

( ) ( ) ( )T
tV t t≤x � � �� ,                          (15) 

where 
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1 1

2 2 ,

ˆ
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in which 

1

ˆ
m

T
i

i =

Γ = + +�A P PA Q  

( ) ( ) ( ) ( )1 ,
TT T Tt t t tω� �= 	 
� x �  

( ) ( ) ( )1 1 .
TT T

mt t h t h� �= − −	 
� x x�  

If it can be shows that 0<�  in (15), then ( ) 0tV <x�  and by 
Definition 1 and the Lyapunov-Krasovskii theorem [22], the 
considered nonlinear delayed system in (1) is robustly 
absolutely stable. But matrix �  is not in the form of an LMI 
and should be transformed. This Matrix can be rewritten as 
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where 
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Using Lemma 1 and inequality (4), (17) becomes 
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Using Lemma 2, (18) can be transformed into (10). This 
completes the proof.                                                                   � 

 
Remark 1. The matrix inequality (10) is linear in the 

unknown parameters 0>P , 0i >Q  ( )1, ,i m= � , and 
0γ > , 0δ > . Therefore, it can be solved using available 

softwares such MATLAB LMI Toolbox. 
 
Remark 2. Since condition (10) is independent of any 

delay, stability of the system (1) will be guaranteed for all 
values of 0ih >  ( )1, ,i m= � . 

 
Remark 3. Since condition (10) is independent of ( )tF , 

robust absolute stability of the system (1) with the nonlinear 
function ( , ( ))t t� z  satisfying (9) is guaranteed for all 
admissible ( )tF  satisfying (4). 

 
Next, the problem of robust absolute stability analysis of 

the nonlinear delayed system (1), with the nonlinear function 
( , ( ))t t� z  in the sector 1 2[ , ]K K  is considered. 

 
Theorem 2. The nonlinear delay system (1) with the 

nonlinear function ( , ( ))t t� z  satisfying (5) and ( ,0) 0t =�  is 
robustly absolutely stable if there exist scalars 0>γ , 0>δ , 
and symmetric matrices 0>P , 0i >Q  ( )1, ,i m= �  such 
that the following LMI holds: 
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where 

1

m
T T

i
i

δ
=

Γ = + + +�A P PA Q E E
 
 
 

 , 

T T Tγ δΨ = − +PD M K E H
 
 
 , T T T
i i iγ δΨ = − +N K E H
 
 
 , 

1i i i= −B B DK N
 , 1i i i= −E E HK N
 , ( )1, ,i m= � , 

2 1= −K K K
 , 1= −A A DK M
 , 1= −E E HK M
 , 

and 	  is the same as in (10). 
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Proof: By applying the loop transformation suggested in 
[1], (1) can be transformed into 
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where the nonlinear function ( , ( ))t t� z
  satisfies 

( )( ) ( )( ) ( ), , 0T t t t t tϕ ϕ� �− ≤	 
z z Kz

 
 ,               (21) 

for any 0t > . Noting (2) and (3), it can be written 
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(23) 

Hence, Theorem 1 can be applied to the transformed system 
(20) with new matrices (22) and (23). This completes the 
proof.                                                                                        � 
 

In the sequel, it is assumed that the nonlinear function in (1) 
is time-invariant and decentralized. Therefore, ( )t�  in (1) 
will be ( ) ( )( )t tϕ= −� z . In this case, the nonlinear function 

( )( )tzϕ ( )( ) ( )( ) ( )( )1 1 2 2 p pt t t� �= 	 
z z z�ϕ ϕ ϕ    (24) 

satisfies 
( ) ( ) ( )( ) ( ) ( )2 2 , 1, ,i i i i i i iz t z t z t z t i p≤ ≤ = �α ϕ β ,  (25) 

for any 0t ≥  and ( )0 1, ,i i i p≥ > = �β α . The following 
theorem shows the delay-independent robust absolute stability 
result of this system. 
 

Theorem 3. The nonlinear delay system (1) with the 
nonlinear function ( ( ))tzϕ  satisfying (25) is robustly 
absolutely stable if there exist scalars 0γ > , 0δ > , and 
symmetric matrices 0>P , 0i >Q , 0i >T  ( )1, ,i m= � , 
diagonal matrices 1 2diag{ , , , } 0pyy y= >Y �  and 

1 2diag{ , , , } 0pcc c= >C �  such that the following LMI 
holds: 
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i
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2 T T
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ij i j i jθ δ= − +N ��YN E E

( )
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( )T T T T
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( )and , 1, ,i j i j m≠ = � , 

( )T T T TΨ = − − + +PD A M C M Y � � E Hδ ,  

2T T T= − − − +CMD D M C Y H H	 δ , 
{ }1 2diag , , , m= − − −T T T T
 � , [ ]1 2 m=N N N N
 � , 

1 2diag{ , , , }p=� �α α α , 1 2diag{ , , , }p=� �β β β . 
 

Proof: Let select the Lyapunov-Krasovskii functional 
candidate as 
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where ( )tV x  is defined in (11). Taking the time derivative of 
ˆ ( )tV x  yields 
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Considering that 0>Y , the sector condition (25) can be 
written as 

( )( ) ( ) ( )( ) ( )2 0,i i i i i i i i iy z t z t z t z t� � � �− − ≤	 
 	 
ϕ α ϕ β  

for ( )1, ,i p= � . That is  

( )( ) ( ) ( )( ) ( )
( ) ( )

2

2

2 2

2 0, 1, , .
i i i i i i i i i

i i i i

y z t y z t z t

y z t i p

ϕ α β ϕ

α β

− +

+ ≤ = �
 

Therefore, 

( ) ( ) ( )( ) ( ) ( ) ( )2 2 2 0T T Tt t t t t t− − + − ≥� Y� � � � Yz z ��Yz , (29) 

where ( )tz  and ( )t�  are defined in (1) and � , � , and Y  are 

defined in (26). Hence, ˆ ( )tV x�  can be expressed as 
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(30) 
Substituting ( )tx�  from (1) into (30) and taking the time 
derivative of ( )tz  in (1) and considering (12), it is 
straightforward to show that 
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( ) ( ) ( )ˆ ˆˆ ˆT
tV t t≤x � � �� ,                         (31) 

where  
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−� �
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θ θ
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Hence, 

( ) ( )
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where 

( )
1

2
m

T T
i

i =

Γ = + + −�A P PA Q M ��YM



, 

2 T
ii i∏ = −PB M ��YN



, ( )T T T

i iiΨ = − − +B M C N Y � �



, 

( )1, ,i m= � , ( )T T TΨ = − − +PD A M C M Y � �



,  

2T T= − − −CMD D M C Y	



, 

0 0 0
T

T T T T

m

� �
= − Φ� �
� �	 


U L P L M C L���
��  

[ ]1 0 0 T
m=V E E E H� . 

Similar to the methods introduced in (17) and (18) and by 
using Lemmas 1 and 2, it is straightforward to show that (34) 
can be transformed into (26). This completes the proof.           � 

IV. NUMERICAL EXAMPLE 
To demonstrate the applicability of the present results, the 

following examples are provided. 
 

Example 1. Consider the system described by (1) with 
single time delay and the following parameters: 

0.5 0
1 1

−� �
= � �−	 


A , 1

0.2 0.5
0.3 1

−� �
= � �−	 


B , 
0.2 0
0 0.3

−� �
= � �−	 


D , 

0.6 0
0 0.8

� �
= � �
	 


M , 
0 0
0 0
� �

= � �
	 


N , 
0.2 0
0 0.5

� �
= � �
	 


K , 
2 0
0 2
� �

= � �
	 


L , 

1

0.02 0
0 0.03

� �
= = � �

	 

E E , 

0 0
0 0
� �

= � �
	 


H . 

Theorem 1 guarantees stability of this system for any value 
of the time delay. The solution given by the LMI control 
toolbox is 

2.260 0.589
0.589 1.514
� �

= � �
	 


P , 
0.286 0.340
0.340 1.323

−� �
= � �−	 


Q ,  

72.529=δ , 1.9795=γ . 

Example 2. In this example, consider the system described 
by (1) with single time delay and the following parameters: 

1 0
1 1
−� �

= � �−	 

A , 1

0.2 0.5
0.3 1

−� �
= � �−	 


B , 
0.3 0
0 0.3

−� �
= � �−	 


D ,  

0.2 0.3
0.1 1

� �
= � �−	 


M , 
0 0
0 0
� �

= � �
	 


N , 
0.2 0
0 0.5

� �
= � �
	 


K , 

1 0
0 1
� �

= � �
	 


L ,  

1

0.05 0.3
0.2 0.05

� �
= = � �

	 

E E , 

0 0
0 0
� �

= � �
	 


H . 
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Fig. 1. State trajectories of the system in Example 2. 

 

In this case, Theorem 1 cannot provide stability of the 
system. However, Theorem 3 guarantees stability of this 
system. The solution given by Theorem 3 is 

14.637 6.225
6.225 6.506

� �
= � �
	 


P , 
3.541 0.111
0.111 4.303
� �

= � �
	 


Q ,  

3.981 1.430
1.430 1.375
� �

= � �
	 


T , 
32.33 0

0 6.304
� �

= � �
	 


Y , 

5.837 0
0 0.768

� �
= � �
	 


S , 30.272=δ . 

For the case of  

( ) ( )
( )

0.5sin 0
0 0.8cos

t
t

t
� �

= � �
	 


F , 1 1.1h =  

states trajectories of the system are shown in Fig. 1.  
 

V. CONCLUSION 
This paper provided some conditions for delay-independent 

robust absolute stability for uncertain Lur’e systems with 
multiple time-delays and sector-bounded nonlinearity. 
Moreover, both cases with the time-varying and time-invariant 
nonlinearities were considered. The conditions were based on 
the Lyapunov-Krasovskii stability theory and were expressed 
as linear matrix inequalities. Simulation examples showed 
effectiveness of the proposed method. 
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