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Abstract— State of Health (SOH) is an important characteristic 
in determining the overall profile of a battery. SOH is a measure 
of the remaining full charge capacity of a battery with respect to 
its nominal capacity. As continuously charged and discharged 
and battery ages, the chemical composition starts to degrade. 
This paper describes a novel online method to determine the SOH 
of a battery. In the proposed method, the SOH of Valve-
Regulated Lead-Acid (VRLA) batteries is estimated using the 
relation between the State of Charge (SOC) and the battery open-
circuit terminal voltage (Voc ). This estimation is performed 
using the least-square method and the fuzzy logic. Experimental 
results show good estimation of the SOH in relatively short time. 
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I.  INTRODUCTION 
One of the important issues in using industrial and 

consumer batteries is to know how many times a battery can 
still be charged and discharged. In other words, how long of 
the battery life still remains. This question can be answered by 
a concept known as the State of Health (SOH). In technical 
terms, SOH is the capability of the battery to deliver a given 
power profile ( )P t or a current profile ( )I t . In terms of the 
stored charge in battery, the SOH is defined as 

max

max

(Aged)
(New)

QSOH
Q

= ,                           (1) 

where Qmax is the maximum amount of charge that can be 
drawn from the battery. Since the electrolyte density of an 
aged battery is reduced and its resistance is increased, this 
definition of SOH indicates how much reactive material is still 
electrically active in an aged battery [1, 2].  

Different methods have been proposed in literatures for the 
SOH estimation. It should be noted that this estimation is not 
the same for different battery types and/or applications. The 
proposed methods for the SOH determination in literatures can 
be divided into two categories:  

Determining the SOH in laboratory by changing effective 
parameters, such as temperature, in a wide range.  

Determining the SOH using the AC and DC impedances 
and conductance measurements. 

The model of a battery is the key part for estimation of the 
SOH of a battery. Salkind et al. have shown that the model of 
a Valve-Regulated Lead-Acid (VRLA) battery is based on the 

electrochemical operation and variations of the voltage and 
current during the charging and discharging processes [5]. 
Pascoe and Anbuky have proposed a model for VRLA 
batteries based on the discharge rate, ambient temperature, 
charge rate, initial SOC, and SOH degradation [6]. This model 
has been further developed in different operating conditions by 
Jossen [7]. 

Two AC-measuring methods, the conductance and 
impedance testings, have been proposed for assessing the SOH 
of VRLA batteries. These methods can find the failed battery 
in a battery bank [8, 9]. The Coup de fouet and temperature-
based techniques are other algorithms for the battery SOH 
determination. However, the problem with determining the 
SOH using the temperature is that the battery SOH is 
indirectly correlated with the temperature changes. Moreover, 
the temperature has a low to medium reliability in this regard 
[10]. The SOH of a lead acid battery can be estimated 
accurately by measuring the coup de fouet voltage, appearing 
in the early stages of the battery discharge [11, 12 and 13]. 
Krein and Balog have proposed a method to find a failed 
battery in a bank of batteries, containing combination of 
multiple cells, using the charge balancing or equalization; 
hence, extending the battery life and reducing costs [14]. 
Successful approaches based on the impedance measurements 
to assess the SOC and SOH of lead–acid batteries have been 
proposed in literatures [15, 16 and 17]. The Galvano-static 
non-destructive technique has been used to determine the SOH 
of a battery by analyzing its impedance parameters [18]. The 
fuzzy logic [19, 20 and 21], Kalman Filter (KL) and Extended 
Kalman Filter (EKF) [22] have also been used to estimate the 
battery SOH. Measuring the effective voltage noise and the 
number of peaks counted in the voltage graph has been 
employed for SOH determination [23]. An accurate two-pulse 
load test method has been proposed by Coleman et al. to 
determine the SOH of VRLA batteries using the battery 
terminal voltage measurement [24]. The SOH of VRLA 
batteries has also been studied using the partial SOC operation 
[25]. 

In this paper, a dynamic model, which is based on the 
electrochemical operation of the battery and the variations of 
the terminal voltage and current, is proposed for determining 
the SOC and SOH of VRLA batteries. The SOC is estimated 
using the EKF. For the SOH estimation, the relation between 

Proceedings of ICEE 2010, May 11-13, 2010 
978-1-4244-6760-0/10/$26.00 ©2010 IEEE

Authorized licensed use limited to: Iran Univ of Science and Tech. Downloaded on July 26,2010 at 12:37:42 UTC from IEEE Xplore.  Restrictions apply. 



the battery open circuit voltage and the SOC is employed. One 
of the main advantages of the proposed method is that it can 
be used online to estimate the SOH of VRLA batteries. 
Experimental results show accurate estimation of the SOH of 
VRLA batteries. 

This paper is organized as follows. Section 2 illustrates the 
model of VRLA batteries, employed in this paper, for the on-
line SOH estimation. Section 3 provides the Q-VOC graph, 
necessary for the on-line SOH estimation. Section 4 shows 
how to design a fuzzy system for estimating the SOH. Section 
5 shows the experimental results. Section 6 gives brief 
description of the hardware setup. Section 7 concludes the 
paper. 

II. MODEL OF VRLA BATTERIES 
Fig 1 shows a simplified equivalent model of VRLA 

batteries [22]. This model has been employed before to 
simulate the response of VRLA cells to constant current and 
dynamic power cycles. In this figure, Ri is the lumped 
resistance due to the cell interconnections. A double layer 
capacitance Csurface shows the result of charge separation at the 
electrolyte/electrode interface and Rt in parallel shows the 
impedance property of Csurface. The capacitance Cbulk models 
the battery’s charge storability. When the battery is in rest, the 
charge stored in the small capacitance Csurface will quickly 
discharge in Rt. Hence, after a short time, the circuit comes to 
the steady state and the battery's open circuit voltage is 
equivalent to the voltage across the Cbulk.  

The open circuit voltage of a battery has the following 
linear relation with the SOC [26]: 

OC 1 0( ) ( )V t a SOC t a= + .                          (2) 

Moreover, the SOC is related to the stored charge Q as 

0
0

0

( )
( ) ( ) 100

t
b

t
I d

SOC t SOC t
Q

τ τ
= + ×� ,             (3) 

where 0( )SOC t  is the initial SOC of the battery, η  is the 
battery efficiency: [0,1] for charging and 1 for discharging,  I  
is the battery’s transient current: positive for charging and 
negative for discharging, 0Q  is the nominal power content of 
the battery based on the Ampere–hour or the maximum 
content of the stored power in a new and healthy battery. 

Hence, it can be concluded that when terminals of the 
battery are open, the value of Q is proportional to the voltage 
across the Cbulk. During the charging and discharging, this 
value is proportional to the voltages across the bulk and 
surface capacitors.  

The capacitance Csurface shows the power storability of the 
battery; hence it can be a measure of the battery ages. 

Consider two batteries, one new and completely healthy and 
the other one used with less charging capacity. Assume that 
the same amount of Q is stored in both batteries. Therefore, 
based on Q CV= it can be concluded that the aged battery 
must have higher open-circuit voltage than the new one. This 
idea  can also  be  observed  from  Figs.  2(a)  and  3(a).  These  

 
Fig.1. equivalent circuit of a VRLA battery 
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Fig.2. The graph of VOC vs. Q of 4 batteries with different SOH 
during charging process (a) experimental result (b) estimation 

line by LS method. 
 
figures show the experimental measurements of the relation 
between the open-circuit voltage and the power stored in four 
batteries with different ages during charging and discharging 
processes, respectively. The stored power Q is estimated using 
the EKF [22]. Moreover, the SOH of these batteries are 
determined using Eq. (1). The data from three of these 
batteries with SOH=100% (blue), SOH=64% (green) and 
SOH=46% (black), are used off-line for constructing a fuzzy 
system to estimate on-line the SOH of the fourth battery. 
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III. SOH ESTIMATION USING FUZZY LOGIC 

A. Slope of Q-VOC Graph 
Figs. 2(a) and 3(a) show the graph of Q vs. VOC during the 

charging and discharging processes, respectively. By ignoring 
the first part of these graphs (circled in Fig. 3(a)), which 
corresponds to the very low charge volume and low voltages 
of the battery (i.e. when the device cannot be used as a power 
source), the remaining part of the graph shows an almost linear 
relation between the Q and VOC. Eq. (2) also confirms this fact. 
It should be noted that the SOH of three batteries (marked with 
blue, green and black colors) have been determined using Eq. 
(1) by data collected from experiments.  

The slopes of these three graphs are determined using the 
familiar Least-Square (LS) method [27, 28]. Fig. 2(b) and 3(b) 
show the calculated slopes for the charging and discharging 
processes, respectively. These values are also summarized in 
Tables I and II, respectively. It should be noted that 46% is the 
lowest value of SOH that a battery can have. I.e., any battery 
with 46%SOH < is considered as a dead battery. 

In the next subsection, the slopes of these three lines along 
with their corresponding SOH are used to build a fuzzy system. 
Then, the fuzzy system is employed for online estimation of 
the SOH of an unknown battery during charging and 
discharging processes. The Recursive LS (RLS) is employed 
for online estimation of the unknown SOH [27, 28]. In this 
method, instead of using all data off line to estimate the slope 
the Q-VOC graph, it is estimated in on-line fashion using the 
current and previous samples of data. Hence, for the first few 
samples, the slope changes drastically, especially because 
noise and uncertainties in systems parameters are present in 
measurements. However, after several sampling data, the slope 
will converge to a certain value; after this point almost no 
noticeable change in the slope can be observed. The RLS 
algorithm can be found in most text books related to parameter 
identification, e.g. [27]. 

B. Designing Fuzzy System 
Two fuzzy systems are designed in this paper for the SOH 

estimation, one for charging and the other one for discharging. 
The input to the fuzzy systems is the slope of the Q-VOC graph. 
The output is the SOH. Figs. 4, 5, and 6 show the membership 
functions of the linguistic variables defined for the input and 
output, respectively. The fuzzy IF-THEN rules are shown in 
Table III. As this table shows, the fuzzy system is comprised 
of only four rules, which make the fuzzy system very simple 
with little calculations. Therefore, the proposed method can be 
applied with inexpensive processors. 

The inference engine is of Mamdani product type. The 
singleton fuzzifier and the center of average defuzzifier are 
selected for designing two fuzzy systems. 

 
TABLE. I. SLOPE OF Q-VOC GRAPHS AND THEIR CORRESPONDING SOH OF 

THREE BATTERIES DURING CHARGING 
SOH Slope of Q-VOC graph 
100% 18.05 
64% 12.01 
46% 7.36 

 

TABLE. II. SLOPE OF Q-VOC GRAPHS AND THEIR CORRESPONDING SOH OF 
THREE BATTERIES DURING DISCHARGING 

SOHSlope of Q-VOC graph 
100% 8.78 
64%4.03 
46% 2.79
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Fig.3. Same as Fig. 2 but for discharging process. 
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Fig. 4. Membership functions of the input variable (slope of the Q-VOC graph) 

for the charging process. 
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Fig. 5. Membership functions of the input variable (slope of the Q-VOC graph) 

for the discharging process. 
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Fig. 6. output (SOH) membership function 

 

TABLE. III. FUZZY IF-THEN RULES FOR ESTIMATING SOH 

RULES  

IF slope is very small, THEN SOH is 0% 1 
IF slope is small, THEN SOH is 46%2 

IF slope is medium, THEN SOH is 64%3 
IF slope is large, TEHN SOH is 100%4 

       

C. SOH Estimation and Experimental Results 
The designed system, explained in previous sections, is 

tested in the next step as an estimator. At this stage, the SOC is 
estimated online using EKF [29] during charging and 
discharging processes [22]. The charging method is of the 
reflecting type in this paper [26]. Hence, the open-circuit 
voltage Voc is measured during the zero current (i.e. when the 
battery’s states are stabilized). Using the estimated SOC and 
the measured Voc, the slope of the Q–Voc is calculated using the 
RLS method. After about one hour, the estimated slope will 
converge to its final value. Then, using the estimated slope as 
the input to the fuzzy system, the estimated SOH of the battery 
is the output of the fuzzy system. 
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Fig. 8. Estimation of SOH and SOC of an unknown battery during charging and 

discharging processes. 

 
First, the SOC and the SOH of the same three batteries, 

whose data were used for constructing the fuzzy system, is 
estimated to show the accuracy of the proposed method (Fig. 
7). As this figure shows, the estimated SOC converges to the 
actual SOC (measured by the Ampere-Hour technique) very 
quickly during charging and discharging processes. The 
estimated SOH also converges to the actual SOH (calculated 
by Eq. (2)) in about one hour. The final estimation of SOH 
(the green lines in Fig. 7) shows that the proposed method has 
an estimation error of 3% or less. 

Next, the SOC and SOH of an unknown battery (i.e. a 
battery, whose data were not used to construct the fuzzy 
estimator) will be investigated. The actual SOH of this battery, 
calculated by Eq. (1), is 72%. Fig. 7 shows that the estimated 
SOH during the charging and discharging processes is 71% 
and 73%, respectively. That is, the estimated error of the SOH 
of the battery (with unknown SOC and SOH) is almost 1%, 
which shows the accuracy of the proposed method. 

 

IV. HARDWARE SETUP 
All experimental results presented in this paper are obtained 
from tests carried out on VRLA batteries with the nominal 
capacity of 2.5 Ah and the nominal voltage of 2 V [30]. 
Appropriate voltage and current sources are designed to 
provide accurate charging process, which is of reflecting type 
[26]. The sampling rate in the hardware design procedure is 
equal to 27 msec., which has been defined based on the battery 
time constant provided by the manufacturer equal to 100 msec.  
The SOC is estimated during every sampling time using the 
EKF. The AVR-ATmega128 processor [31] can perform the 
required calculations in less than 10 milliseconds. Figure 9 
shows the hardware setup. The hardware is comprised of the 
voltage and current sensing circuits, the current supply, the 
voltage limiter (driver), and the interface circuit. 

Authorized licensed use limited to: Iran Univ of Science and Tech. Downloaded on July 26,2010 at 12:37:42 UTC from IEEE Xplore.  Restrictions apply. 



  

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

R
e 

S
O

H
=

64
%

 

 

0 1 2 3 4 5 6 7

0

0.5

1

R
e 

S
O

H
=

46
%

time (h)

 

 

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

R
e 

S
O

H
=

10
0%

 

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

time (h)

 

 

Es SOC

Es SOH
Re SOC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.2

0.4

0.6

0.8

1

 

Es SOH=98.1%Es SOH=97%

Es SOH=62.9%
Es SOH=63.8%

Es SOH=46.4%

Es SOH=45%

 
Fig. 7. Estimation of SOH and SOC of three batteries for known SOH=100%, 64%, and 46% during charging (left) and discharging (right). 

 

 
Fig.9. Hardware setup, A: sensing circuits for voltage and current, B: current 

supply and voltage limiter, C: interface circuit. 
 

V. CONCLUSIONS 
In this paper, a novel method was proposed for on-line 
estimation of State-of-Health (SOH) of Valve-regulated Lead-
Acid (VRLA) batteries. The proposed method is based on 
estimation of the slope of the linear relationship between the 
available power in the battery versus the open-circuit voltage 
of the battery. For this reason, three batteries with known SOC 
and SOH were used to construct a fuzzy system. These three 
batteries provide information form a completely healthy 
battery, an almost dead battery, and a half-used battery. Then, 
the proposed method was used to estimate the SOH of an 

unknown battery. Experimental results show accurate 
estimation of the SOH as well as the SOC during the charging 
and discharging processes. Moreover, due to the very simple 
structure of the fuzzy system, the proposed method can be 
applied with low costs to industrial devices as well as house-
hold appliances. Although the results shown in this paper were 
obtained by connecting the circuits to a PC, for practical 
applications just an LCD suffices to show the predicted SOH 
after about one hour. 
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