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Abstract— Analyzes of the frequency variations of switching for 
relay feedback systems is considered in this paper. That is, the 
relationship between the frequency variations and the phase 
variations of the linear system, when used in relay feedback form, 
is derived. It will be shown that for linear systems that their 
phase angle does not crosses 0180− , the switching frequency 
increases without bound and there is no equilibrium point. 
Furthermore, it will be shown that for systems with the relative 
degree greater than two, i.e. systems that their phase angle 
crosses 0180− , the phase angle equal to 0180−  is an equilibrium 
point for the oscillations frequency. Moreover, the equation that 
indicates the relation between the switching frequency variations 
and characteristics of systems such as the phase and amplitude of 
the system will be derived. 

Keywords- Relay feedback systems; Phase angle; Switching 
frequency. 

I.  INTRODUCTION 
Research on relay feedback systems is fast developing and 

recently several papers have been published in this area. This 
is mainly due to the complex behavior and interesting 
characteristics of relay feedback systems. 

The first relay application was commenced in 
electromechanical systems by using simple models for dry 
frictions [1]. Then, due to interesting properties, the relay 
feedback systems were developed for aerospace applications 
[2] and later on for self-oscillating adaptive controllers [3]. 

A number of analysis methods and results for the modeling 
of relay feedback systems, existence of limit cycles and 
methods for estimating switching frequencies, and the 
amplitude of oscillations are discussed in [4-6]. 
It is well known that when relay feedback systems are 
operating in the sliding mode, they may have finite or infinite 
switching frequencies, which are called the limit cycle and the 
chattering phenomenon, respectively [7, 8].               

The stability of relay feedback systems, when operating in 
the limit cycle, is shown by some researches [9-10]. Also, 
when the relay feedback system is operating in the sliding 
mode, one can use the amplitude and frequency of oscillations 
to determine some parameters of the system such as the 
amplitude of the system on that frequency. This property has 
been used for tuning parameters of PID controllers [11] and 
for identification of linear systems [12, 13]. In addition, relay 

feedback systems are designed using new structures to provide 
new tools in control engineering concepts [14-16]. For 
example, in [15] two relays are employed in parallel where the 
gain of relays can be determined such that the stability region 
of the system is improved. Some researchers have decomposed 
the relay model into the slow mode and the fast mode, which 
yield more accuracy as well as simpler implementation in 
some applications [17]. In [17], authors have used this kind of 
modeling for the observer design where the relay model in the 
slow frequency mode is replaced with the equivalent gain and 
have shown that it simplifies the stability of the closed-loop 
system. 

In spite of these researches, there exists lack of analysis on 
the frequency variations of relay feedback systems. One of the 
important factors in relay feedback systems is to analyze the 
rate of frequency variations and its convergence rate. The 
main goal of this paper is to discuss the frequency behavior of 
relay feedback systems. It will be shown analytically, systems 
that their phase angles crosses 0180−  have an equilibrium 
point at this frequency. It should be noted that the phase 
variations around this equilibrium point is caused by the 
switching frequency. On the other hand, systems, whose phase 
does not cross 0180−  do not have any equilibrium point on 
their switching frequency. 

This paper is organized as follows. Section 2 gives the 
problem statement. Analytical results on the frequency 
variations are shown in Section 3. Section 4 provides 
simulation results, followed by conclusion in Section 5.  

II. PROBLEM STATEMENT 
Let the linear plant be given by 

,
u

y
=
=

x Ax + B
Cx

�
                                   (1) 

where u is the output of the relay (Fig. 1) and can be presented 
as 

( )sgnu c y= − ,                                (2) 

in which c  is the gain of the relay. The harmonic balance 
equation of the relay feedback system can be written as [18] 

( ) ( ) 1G j N aΩ = − ,                            (3) 
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where ( )G j Ω  is the system transfer function, ( )N a  is the 
equivalent gain of the relay, and a is the amplitude of 
oscillations 

( ) ( )siny t a t= Ω .                              (4) 

The equivalent gain of the relay feedback system is 
determined by the following equation [15, 16]:  

( ) 4cN a
aπ

= − .                                  (5) 

 
Assumption 1: The relay feedback considered in this paper is 
an ideal relay represented by (5). 

 
Assumption 2: It is assumed that conditions for the stability of 
oscillations are satisfied. I.e. oscillations are stable. 

 
These assumptions are taken in order to simplify the 

frequency analysis that will be discussed in the next section. 

 

III. FREQUENCY ALANYSIS 
The transfer function of the system (1) can be decomposed 

into the real ( )R Ω  and imaginary ( )I Ω  parts as 
( ) ( ) ( )G j R jIΩ = Ω + Ω                        (6) 

and in the polar from as 
( ) ( ) ( )jG j M e Φ ΩΩ = Ω                          (7) 

where ( )M Ω is the amplitude and ( )Φ Ω  is the phase angle 
of the system, respectively. 

 
Theorem 1: Consider the linear system with the relay 

feedback given in (1) and (2). The frequency variation of 
oscillations ΔΩ  of the relay feedback system satisfies the 
following equations 

( )
( )

4
c R
a

dR
d

π− − Ω
ΔΩ =

Ω
Ω

                              (8)  

( )
( )
I

dI
d

− Ω
ΔΩ =

Ω
Ω

                                (9) 

 
Proof: Let rewrite (3) replacing Ω  with Ω + ΔΩ  as 

( )( ) ( )
1 .G j

N a
−Ω + ΔΩ =                       (10) 

Using the Taylor expansion method, it gives 

( ) ( )
( )
1dG j

G j j
jd N a

χ
Ω −Ω + ΔΩ + =

Ω
,            (11) 

where χ indicates high order terms 

( ) ( )
2

n
n

n
n

d G j
j

jd
χ

∞

=

� �Ω
= ΔΩ� �

Ω� �� �
� .                   (12)                          

 
Fig. 1. Relay feedback system. 

 
Since ΔΩ  is relatively small and in addition for linear 
systems ( )n nd G j jdΩ Ω  is negligible for 2n > , χ  can be 
neglected without loss of generality. Using (5) and (6), (11) 
can be rewritten as 

( ) ( ) ( ) ( )
4

dR dI aR j I
d d c

π� �Ω Ω
Ω + ΔΩ + Ω + ΔΩ = −� �Ω Ω� �� �

  (13) 

Separating the real and imaginary parts 

( ) ( )
4

dR aR
d c

πΩ
Ω + ΔΩ = −

Ω
                     (14) 

( ) ( )
0

dI
I

d
Ω

Ω + ΔΩ =
Ω

,                        (15) 

which are the same as (8) and (9).                                        � 
 

Remark 1: The frequency variation ΔΩ  must satisfy (8) 
and (9). Since (9) is independent of the amplitude of the limit 
cycle (a), it is easier to determine ΔΩ  using (9). Then, (8) can 
be used to validate the results from (9). Moreover, the 
amplitude of oscillations (a) obtained from (8) must be 
positive and finite. In other words, if ΔΩ  obtained form (9) 
and substituted into (8), gives negative value for the variable 
a, it is not acceptable; that is, such operating point does not 
exists for the system. 

 
Remark 2: It can be concluded from (8) that when the 

amplitude of limit cycle a increases, the frequency variations 
ΔΩ  decreases. 

 
Assumption 3: It is assumed that the sign of 
( )dM j dΩ Ω  and ( )d j dΦ Ω Ω  for the system (1) does not 

change when the switching occurs. This assumption is valid for 
almost all systems and does not restrict the validity of the 
analysis that follows. 

Next, the equilibrium point of the frequency variations ΔΩ  
is analyzed. 
 
Proposition: if the following conditions are satisfied: 

( )( ) 0sgn 0 ifd j d� �Φ Ω Ω ΔΩ > Φ ≤ Φ� �           (16) 

( )( ) 0sgn 0 ifd j d� �Φ Ω Ω ΔΩ < Φ > Φ� � ,          (17)            

then, the phase angle 0Φ = Φ , where ( )0 0Φ = Φ Ω , is an 
equilibrium point for the phase angle variations of the system 
caused by the switching frequency variations. 

( )G s

y

u
y

=
=

x Ax + B
Cx

�
u

-1 
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TABLE I.  ΔΩ  OBTAINED USING (23) FOR SYSTEMS WITH RELATIVE DEGREE GREATER THAN 2 
 

 

 

 

 

 
 
 

  �  The gray column indicates the case where ΔΩ  produces negative sign for a
 

Proof: By Assumption 3  

( )( ) [ ] ( )sgn sgn sgnd j d d d j� � � �Φ Ω Ω ΔΩ = ΔΩ Ω Φ Ω� �� � (18) 

which can be written as 

( )( ) ( )sgn sgnd j d d j� � � �Φ Ω Ω ΔΩ = Φ Ω� �� � . 

Hence, for 0Φ ≤ Φ  if ( )sgn 0d j� �
� �Φ Ω > , then ( )jΦ Ω  

increases until it reaches the phase angle 0Φ = Φ ; and for 
0Φ > Φ  if ( )sgn 0d j� �

� �Φ Ω < , then ( )jΦ Ω  decrease  until 
it reaches the phase angle 0Φ = Φ . Therefore, under these 
conditions, ( )jΦ Ω  converges to 0Φ . In other words, 

( )0 0Φ = Φ Ω  is an equilibrium point.                          �   
              

Theorem 2: Consider the linear plant (1) with the relay 
feedback (2). The frequency variation ΔΩ  has an equilibrium 
point at the phase angle corresponding to 0180−  (i.e. a limit 
cycle exists). Moreover, if the system phase does not cross 

0180−  at any frequency, then the frequency increases without 
bounds and the ideal sliding mode occurs. 

 
Proof: Since  

( ) ( ) ( )( )sinI MΩ = Ω Φ Ω                      (19) 

( ) ( ) ( )( )cosR MΩ = Ω Φ Ω
                

     (20) 

and 

( ) ( ) ( )( ) ( ) ( ) ( )( )sin cos
dI dM d

M
d d d

Ω Ω Φ Ω
= Φ Ω + Ω Φ Ω

Ω Ω Ω
(21) 

( ) ( ) ( )( ) ( ) ( ) ( )( )cos sin
dR dM d

M
d d d

Ω Ω Φ Ω
= Φ Ω − Ω Φ Ω

Ω Ω Ω
 (22) 

equation (9) becomes 

( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

sin

sin cos

M
dM d

M
d d

− Ω Φ Ω
ΔΩ =

Ω Φ Ω
Φ Ω + Ω Φ Ω

Ω Ω

. (23) 

In addition, substituting (21) into (9) yields 

 

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

4 cos

4sin cos

dMca
d

d cM M s
d

π

π

� Ω
= −ΔΩ Φ Ω −� Ω��

�Φ Ω
− Ω Φ Ω − Φ Ω�Ω ��

 (24) 

According to Theorem 1 and Remark 1, the frequency 
variation ΔΩ , calculated using (23), is acceptable only when 
it is substituted in (24) it yields a positive and finite value for 
the amplitude of the limit cycle a. A negative value for a 
indicates that the limit cycle or the switching phenomenon 
does not occur for the relay feedback system. 

In order to analyze the sign of ΔΩ and finding the 
equilibrium point, the sign of the numerator and denominator 
of (23) must be determined. This will be determined for the 
following two cases. 

 
Case 1: Assume that the relative degree of the system in (1) 

is greater than two. In other words, a system with generally 
reducing phase angle as the frequency grows and crosses the 

o180−  line. In this case, without loss of generality, it is 
assumed that during the switching, the slope of the phase and 
the amplitude is always negative; that is, ( ) 0d j dΦ Ω Ω ≤  
and ( ) 0dM j dΩ Ω ≤ . 

Table I shows the sign of ΔΩ  with respect to the frequency 
variations as the phase of the system decreases from o0  to 

o270−  while the frequency Ω  increases from 0  to +∞ .  
If the limit cycle is stable at the starting moment of 

switching, there exists an increase in Ω . Hence, it is clear that 
the sign of ΔΩ  at this instance is positive. By observing Table 
1, one can conclude that at the starting instance of the 
switching sΦ ≤ Φ . As this table shows, the switching occurs 
in the range of sΦ < Φ , where o o0 90s≤ Φ ≤ − . In this range 
of phase, ΔΩ  yields a positive value for a . Therefore, based 
on Remark 1, the sign of ΔΩ  can be determined for sΦ < Φ . 

One example from Table I can be shown as follows. Let 
( ) ( 2)j −Φ Ω → − π ; then, from (23) and using 
( )sin 2 1−− = −π  gives 

( )( )
( ) ( ) ( ) ( )

( )
( )

1
0

1

MM
dM d dMM

d d d
ε

Ω− Ω −
ΔΩ ≈ = >

Ω Φ Ω Ω− + Ω
Ω Ω Ω

 (25) 

Substituting (25) into (24) yields 

( )jΦ Ω  0
0

−

Ω →
 sΦ  

2
+

−π  2
−

−π  +−π  −−π  3
2

+
− π  3

2
−

− π  

( )I j− Ω  + + + + + – + + 

( )Id j
d

Ω
Ω

 – + + + + + – – 

ΔΩ  – + + + + – – – 
a  – + + + + + + + 
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( ) ( ) ( ) ( )

( ) ( ) ( )

4 1

4 0

d jca M j
d

d jc M j
d

π

π

� �Φ Ω
≈ −ΔΩ − Ω −� �Ω� �� �

Φ Ω
= ΔΩ Ω >

Ω

   (26) 

Based on Remark 1, it can be concluded that 0ΔΩ > is 
true. 

As Table I shows, the sign of ΔΩ  changes as the phase 
angle of the system crosses o180− . Therefore, according to 
Proposition, o180−  is an equilibrium point for phase 
variations of the system caused by the switching frequency 
variations ΔΩ . Consequently, 0ΔΩ →  as the phase angle of 
the system approaches o180− . Hence, for systems with 
relative degree greater than two, a limit cycle with fixed 
frequency ( 0ΔΩ = ) exists. 

 
Case 2: In this case, the frequency variation ΔΩ  is 

computed when the phase angle of the system converges to a 
certain value but does not cross o180−  as Ω → ∞ . First, one 
can easily see from the theory of linear systems that 

a)  For systems with relative degree equal to zero, when 
( ) 0j +Φ Ω →  as Ω → ∞ , it yields  

( )
0

d j
d

Φ Ω
<

Ω
 and 

( )
0

dM j
d

Ω
>

Ω
. 

Moreover, when ( ) 0j −Φ Ω →  as Ω → ∞ , it gives  

( )
0

d j
d

Φ Ω
>

Ω
 and 

( )
0

dM j
d

Ω
<

Ω
. 

b) For systems with relative degree equal to one and two 
(i.e. systems whose phase angle does not cross o180− ), 
when ( )j +Φ Ω → Φ as Ω → ∞ ,where o o{ 90 , 180 }Φ = − − , 
it yields  

( )
0

d j
d

Φ Ω
<

Ω
 and 

( )
0

dM j
d

Ω
<

Ω
. 

And when ( )j −Φ Ω → Φ  as Ω → ∞ , where o{ 90 }Φ = − , 
it gives  

( )
0

d j
d

Φ Ω
>

Ω
  and   

( )
0

dM j
d

Ω
<

Ω
. 

Table II summarizes the results for different phase angles. 
For example, ΔΩ  can be computed for systems with relative 
degree equal to zero, when ( ) 0j −Φ Ω →  as Ω → ∞ . From 
(23) and assuming that ( )sin 0 0ε− = − <  

( )( )
( ) ( ) ( ) ( )

( )

( ) ( ) 0

M s
dM j d j

M j
d d

M s
d j

M j
d

− −
ΔΩ =

Ω Φ Ω
− + Ω

Ω Ω

≈ >
Φ Ω

Ω
Ω

ε

ε

ε
 

          (27) 

TABLE II.  ΔΩ  OBTAINED USING (23) FOR SYSTEMS WITH RELATIVE 
DEGREE SMALLER THAN 3. 

( )j
Ω→∞

Φ Ω →  0−  2
+

−π  2
−

−π  +−π  

( )I j− Ω  + + + + 

( )Id j
d

Ω
Ω

 + + + + 

ΔΩ  + + + + 

a + + + + 

 

Substituting (27) into (24) yields 

( ) ( ) ( )( ) ( ) ( )4 4cos
dM jc ca j M s

dπ π
� �Ω

≈ +ΔΩ Φ Ω −� �
Ω� �� �

 (28) 

It is clear that if 0ΔΩ > , then a  can become positive.  
Therefore, 0ΔΩ >  is acceptable. This means that the 
frequency of switching in systems with the relative degree 
equal to zero increases without bound.  

Next, when ( )j π +Φ Ω → −  as Ω → ∞  (i.e. systems with 
relative degree equal to two)  

( )( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1

0

M s
dM j d j

M j
d d

M s
dM j d j

M j
d d

− −
ΔΩ =

Ω Φ Ω
− + Ω −

Ω Ω

≈ >
Ω Φ Ω

+ Ω
Ω Ω

ε

ε

ε

ε
     

 (29) 

Using (21), it gives 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 41 1

4 4

dM jc ca M s
d

dM jc c M s
d

� �Ω
≈ −ΔΩ − − −� �Ω� �� �

Ω
= −ΔΩ +

Ω

π π

π π

   (30) 

It is clear that (30) can be positive for both 0ΔΩ <  and 
0ΔΩ > . Positive ΔΩ  can produce positive a  according to 

(30). Consequently, one can conclude that (29) is true. This 
completes the proof.                                                            � 
 

IV. SIMULATING RESULTS 
Example 1: Consider the following system with the relative 

degree equal to three: 

( ) ( ) ( )( )1
50G

0.2 3 4
s

s s s
=

+ + +    
               (31) 

The Bode diagram of this system is displayed in Fig. 2. Fig. 
3 shows ΔΩ  using (23). As this figure shows, ΔΩ  exhibits a 
sign change at the frequency 3.66 rad/s , which corresponds to 
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the phase angle equal to o180− . This, according to the 
Proposition, means that the system has a fixed oscillating 
frequency (i.e. a limit cycle) at 3.66 rad/s . Fig. 4 shows the 
time-domain response of the system using the closed-loop 
relay feedback configuration in Fig. 1. Fig. 4 confirms the 
limit cycle of 3.66 rad/s. 

 
Example 2: Consider the following system with the relative 

degree equal to two: 

( ) ( )( )2
5G

0.2 0.4
s

s s
=

+ +
.                      (32) 

Fig. 5 shows the Bode diagram of this system where the 
phase angle does not cross the o180−  line. The frequency 
variation ΔΩ  is computed using (23) and is shown in Fig. 6. 
As this figure shows, ΔΩ  increases without bound; in other 
words, the frequency of switching approaches infinity. This 
fact is confirmed by inspecting the time-domain response of 
this system in the relay feedback form (Fig. 7). 
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  Fig. 2: Bode Diagram of ( )1G s . 
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Fig. 3: ΔΩ  for ( )1G s  using (18). 
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Fig. 4: Output of ( )1G s  using relay feedback 
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Fig. 7: Output of ( )2G s  using relay feedback. 

 

V. CONCLUSION 
In this paper, the switching frequency behavior of the relay 

feedback systems was considered. The relation of the 
frequency variations with respect to the amplitude and the 
phase angle of the system were derived. Moreover, it was 
shown that for systems with the relative degree greater than 
two, the frequency corresponding to the phase angle of o180−  
is an equilibrium point. In the other words, for systems with 
the relative degree greater than two, the switching frequency 
increases until the phase angle of the system reaches o180− . 
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