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Abstract  — This paper deals with the problem of robust 
absolute stability of uncertain multiple time-delay Lur’e 
systems with sector-bounded nonlinearity. The 
nonlinearities are assumed to be time-varying. Based on 
the Lyapunov-Krasovskii stability theory and linear 
matrix inequalities (LMIs) approach, some delay-
dependent sufficient conditions for the robust absolute 
stability are derived and are expressed as the feasibility 
problem of a certain LMI system. Finally, some examples 
are given to illustrate the proposed results. 
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I. INTRODUCTION 

Many nonlinear control systems can be represented as 
feedback connection of a linear dynamical system and a 
nonlinear element, where the nonlinear element 
satisfies certain sector constraints [1]. Based on these 
classes of nonlinear systems, the notion of absolute 
stability was introduced by Lur’e in [2]. After that, the 
problem of the absolute stability of Lur’e system has 
been widely studied for several decades [3-6]. 

The existence of time-delays is often a source of 
instability and performance degradation. In addition, 
when time delays appear in a dynamic system, analysis 
of such systems becomes more complex [7]. The 
existing stability criteria for time delay-systems can be 
classified into two categories: delay-independent and 
delay-dependent [7]. Delay-independent conditions are 
useful for the systems that are stable for any value of 
time-delays. However, it is difficult to find such 
systems. Delay-dependent conditions are less 
conservative than delay-independent ones, especially 
when the size of the delay is small. In most of practical 
problems, the size of the time delay or the maximum 
value of that is known. Hence, the delay-dependent 
conditions are more practical. For the case of time-
delayed Lur’e systems without uncertainty, some 
remarkable results have been developed in literatures. 
The problem of delay-independent absolute stability is 
considered in [8]. Delay-dependent absolute stability 
conditions of Lur’e systems with multiple time delay 
and nonlinearities have developed in [9-11]. In 

addition, some researchers focus on Lur’e systems with 
time-varying delay [12, 13]. 

Recently, practical considerations such as model 
uncertainties and time delays are considered for 
stability analysis of Lur’e systems [14-19]. To the best 
of our knowledge, delay-dependent absolute stability of 
uncertain Lur’e systems with multiple time-delays has 
not been fully investigated [20, 21]. 

This paper discusses the problem of delay-dependent 
absolute stability of uncertain Lur’e systems with 
multiple time-delays. Based on the Lyapunov-
Krasovskii stability theory and Linear Matrix 
Inequalities (LMIs) approach, some delay-dependent 
sufficient conditions for the robust absolute stability will 
be derived and expressed as the feasibility problem of 
certain LMI systems. Finally, some examples are given 
to validate the results. 

 
Notations. Through this paper, n¡  denotes the n-

dimensional Euclidean space, and n m×¡  is the set of 
real n m×  matrices. 0>P  means that P  is a real 
positive definite symmetric matrix. [ , 0]h−£  denotes the 
space of continuous functions defined on [ , 0]h− , and I  
is the identity matrix with appropriate dimensions. 

{ }, ,1diag mW WL  refers to a real matrix with diagonal 
elements 1 , , mW WL . TA denotes the transpose of real 
matrix A . Symmetric terms in a symmetric matrix are 
denoted by * . 

II. PROBLEM FORMULATION 

Consider the uncertain Lur’e system with multiple 
time-delays as 
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where ( ) nt ∈x ¡  denotes the state vector, ( ) pt ∈ω ¡  is 
the input, ( ) pt ∈z ¡  is the output and 

( ) ([ ], ), 0 nt hφ ∈ £ ¡   is a continuous vector-valued 
initial function. ( )0 1, ,ih i m≥ = L  are time delays, 
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and M  and ( )1, ,p n
i i m×∈ =N ¡ L  are known real 

constant matrices. A  and ( )1, , n n
i i m ×= ∈B L ¡ , and 

n p×
∈D ¡  are time-varying matrices with the following 

structures: 
( ) ( )

( ) ( )
,

, 1, ,

,

i i i

t t

t i m

= + ∆ = + ∆

= + ∆ =

A A A D D D

B B B L
               (2) 

 

where A , ( )1, ,i i m=B L , and D  are known real 
constant matrices. ( )t∆A , ( ) ( )1, ,i t i m∆ =B L , and 

( )t∆D  are norm bounded parameter uncertainties and 
are assumed to be of the form 
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where ( ), , 1, ,i i m=L E E L , and H  are known real 
constant matrices with appropriate dimensions and 

( ) q kt ×∈F ¡  is the unknown time-varying real matrix 
satisfying  
 

( ) ( )T t t ≤F F I .                           (4) 
 

The nonlinear function ( )( ), pt t ∈zφ ¡  is piecewise 
continuous in t , globally Lipschitz in ( )tz , 

( ), 0 0t =φ , and satisfies the following sector 
condition for any 0t ≥  and ( ) pt ∈z ¡ : 
 

( )( ) ( )( ) ( )[ ], , 0t t t t t− ≤z z Kzϕ ϕ .          (5) 
 

Such a nonlinear function ( )( ),t tzφ  is said to belong 
to the sector [0, ]K . 
 

Definition 1. The nonlinear delay system (1) is said 
to be robustly absolutely stable in the sector [0, ]K  if it 
is globally uniformly asymptotically stable for any 
nonlinear function ( )( ),t tzφ  satisfying ( ), 0 0t =φ  
and (5) and for all admissible uncertainties [18]. 
 

Lemma 1. (Jensen inequality [22]) For any constant 
matrix n n×∈R ¡ , scalar 0h >  and a vector function 

( ) ([ ], ), 0 nt h∈x £ ¡ , such that the integrations 
concerned are well defined; then, 
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t h t h t h
h s s ds s ds s ds

− − −
− ≤ −∫ ∫ ∫x Rx x R x
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t h t h t h
h s s ds s ds s ds

− − −
− ≤ −∫ ∫ ∫x Rx x R x& & & &

                                                                                 
(6) 

 
Lemma 2. ([23]) For given matrices T

=Ψ Ψ , U  and 
V  with appropriate dimensions, the following 
inequality 

( ) ( ) 0T T Tt t+ + <Ψ UF V V F U , 
holds for all ( ) ( )T

t t ≤F F I  if and only if there exists 
0ε >  such that 

1 0T Tε ε−
+ + <Ψ UU V V .                   (7) 

 
Lemma 3. (Schur complement [24]) Let the 

symmetric matrix M  be partitioned as 

T
=
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 
 
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, 

where X  and Z  are symmetric matrices. Then, 0>M  
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In the following section, the main results will be given 
based on the above lemmas. 
 

III. MAIN RESULTS 

Theorem 1. The nonlinear delay system (1) with the 
nonlinear function ( )( ),t tzφ  satisfying (5) and 

( ), 0 0t =φ , is robustly absolutely stable if there exist 
scalars 0γ > , 0δ > , and symmetric matrices 0>P , 

0i >Q , 0i >R , 0i >W , 0i >S , ( )1, ,i m= L  such 
that the following LMI holds: 
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where 

( )
1

m
T T

i
hi i i i δ

=

Γ = + + + − +∑A P PA Q R S E E , 

T T Tγ δΨ = − +PD M K E H , 

[ ]1 2 mΩ = W W WL , 

{ }1 2diag , , , m= − − −W W W W% L , 2

1

m

i i
i

h
=

Φ = ∑ S , 

{ }1 1 2 2diag 1/ , 1/ , , 1/. . .m mh h h= − − −R R R R% L , 

2 Tγ δ= − +I H HJ , T
i i i iδ∏ = + +PB S E E , 

T
i i i i iδ∑ = − − +Q S E E , T T T

i i iγ δΨ = − +N K E H , 

( )1, ,i m= L . 
Proof. Let select the Lyapunov-Krasovskii functional 
candidate as 
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( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5t t t t tV V V V V V= + + + +x x x x x x  (10) 
where 
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where tx  is defined as ( )t t θ= +x x , 

{ }
1
max , 0[ ]

i m
ihθ

≤ ≤
−∈ . Taking the derivative of ( )tV x  

with respect to t  yields 
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Using Lemma 1, it gives 
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Using the Leibniz-Newton formula 
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(16) 
Using ( )( )( ) ,t t t= −ω zφ  as in (1), the sector 
condition (5) can be written as 

( ) ( ) ( )[ ] 0T t t t− + ≥ω ω Kz                (17) 

where ( )tz  and ( )tω  are defined in (1). Hence, ( )tV x&  
can be expressed by 
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where γ  is the same as in Theorem 1. By substituting 

( )tx&  from (1) into the (18) and considering (11)-(18), 
it is easy to show that 
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in which 
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and Ω , W% , R%  are defined in (9). 
If it can be shows that 0<Ξ  in (19), then ( ) 0tV <x&  
and by definition 1 and the Lyapunov-Krasovskii 
theorem [25], the considered nonlinear delayed system 
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is robustly absolutely stable. But the matrix Ξ  is not an 
LMI and should be transformed into an LMI. Matrix Ξ  
can be rewritten as 
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where Φ  is defined in (9) and 
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Using Lemma 3, it is easy to show that (21) with can be 
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Noting (2) and (3), (22) can be written as 
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( ) ( ) 0,T T Tt t+ + <UF V V F U                (23) 

where  
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Using Lemma 2 and inequality (4), (23) is equivalent to 
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where the elements are defined in (9). 
Again, using Lemma 3, (24) can be transformed into 
(9). This completes the proof.                                      □ 
 

Next, the problem of robust absolute stability analysis 
of the nonlinear delayed system (1), with the nonlinear 
function ( )( ),t tφ z  in a sector 1 2,[ ]K K  is considered.  
 

Theorem 2. The nonlinear delay system (1) with the 
nonlinear function ( )( ),t tzφ , satisfying (5) and 

( ), 0 0t =φ , is robustly absolutely stable if there exist 
scalars 0γ > , 0δ > , and symmetric matrices 0>P , 
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that the following LMI holds: 
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(25) 
where 
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i i i i iδ∑ = − − +Q S E E% % % ,  T T T
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2 1= −K K K% , 1= −A A DK M% , 1= −E E HK M% , 
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1i i i= −B B DK N% , 1i i i= −E E HK N% , ( )1, ,i m= L , 

and Ω , W% , Φ , R% , J  are defined in (9). 
 

Proof: By applying the loop transformation suggested 
in [1], (1) can be transformed into 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )( )
( ) ( ) { }

1 1
1

1

1

,

,

, ,

, [ max ,0],

i i

m
i

i
m

i ii

i
i m

t t t h t

t t t h

t t t

t t t hφ

=

=

≤ ≤

− −


= + − +

 = + −
 = −
 = ∀ ∈ −

∑

∑

A DK M B DK N D

M

x x x ω

z x N x

ω z

x

φ

%&

% %

                                                                                (26) 
where the nonlinear function ( )( ),t tzφ%  satisfies 

( )( ) ( )( ) ( )[ ], , 0T t t t t t− ≤z z Kzφ φ %% % ,          (27) 
 

for any 0t > . 
Noting (2) and (3), it yields 
 

( ) ( )( )
( ) ( ) ( ) ( )

1 1

1 1 ,

t t

t t

− = + − +

= − + − = +

A DK M A LF E D LF H K M

A DK M LF E HK M A LF E% %
  (28) 

 

( )( ) ( )( )
( ) ( )( ) ( )

1 1

1 1 ,
i i i i i

i i i i i i

t t

t t

− = + − +

= − + − = +

B DK N B LF E D LF H K N

B DK N LF E HK N B LF E% %
 (29) 

 

for ( )1, ,i m= L . 
Hence, Theorem 1 can be applied to the transformed 

system (26) with new matrices (28) and (29). This 
completes the proof.                                                     □ 

 

IV. ILLUSTRATIVE EXAMPLES 

To demonstrate the applicability of the presented 
results and to compare them with the previously 
reported results, the following examples are considered. 

 

Example 1. Consider the system described by (1) 
with single time delay and the following parameters 
[26]: 
 

2 1
0.5 0.2
− − 

=  
 

A , 1

0.5 1
0.1 0.8

 
=  − − 

B , 
0.5 0
0 0.2

− 
=  

 
D , 

0.4 0
0 0.5

 
=  

 
M , 

0.2 0
0 0.3

 
=  

 
N , 1

0.1 0
0 0.2

 
=  

 
K , 

2

0.4 0
0 0.5

 
=  

 
K , 

0 0
0 0

 
=  

 
L , 1= = =E E H L . 

 

A comparison of the delay-dependent conditions 
between this article and different methods in [26] is 
given in Table 1. It is obvious that the maximum 
allowable delay h  obtained by using Theorem 2 in this 

paper, is larger than those obtained in [26]. Hence, the 
theorems presented in this paper are less conservative 
as compared to those in [26]. 

 
Example 2: Consider the system described by (1) 

with two time delays and the following parameters: 
 

1.2 0

0.8 1

−
=

−

 
  

A , 1

1 0.6

0.6 1

−
=

− −

 
  

B , 2

0.5 0.4

1 1

−
=

− −

 
  

B , 

 

0 1

1 0
=

 
  

D , 
1 0

0 1
=

 
  

M , 1

0 0

0 0
=

 
  

N , 

 

1 =K N , 2

0.1 0

0 0.2
=

−

 
  

N , 2

1 0

0 1.5
=

 
  

K , 

 

1 0

0 1
=

 
  

L , 
0.2 0

0 0.2
=

 
  

E , 1

0.03 0

0 0.03
= =

 
  

E H , 

 

0.05 0

0 0.05
=

 
  

E , ( )
( )

( )
0.5 sin 0

0 0.8 cos

t
t

t
=

 
  

F , 

 

( )( )
( )( )

( )( )
1

2

tanh

1.5 tanh

z t
t

z t
=

 
  

zφ . 

 
For various time delays, the maximum allowable 

value for 1h  and 2h  are calculated and shown in Fig. 1. 
Theorem 1 guarantees stability of the system in region 
A. For the case of 1 0.43h =  and 2 0.63h = , states 
trajectories of the system are shown in Figure 2.  

 

V. CONCLUSION 

This paper provided some conditions for delay-
dependent robust absolute stability for uncertain Lur’e 
systems with multiple time-delays and sector-bounded 
nonlinearity. These conditions are based on the 
Lyapunov-Krasovskii stability theory and expressed as 
linear matrix inequalities. Finally, examples showed 
that the proposed theorems in this article are less 
conservative as compared to the recently published 
papers with single time delay. The main advantage of 
this paper is for systems with multiple time delay that 
was not performed in previously reported papers. 

 
Table 1: Comparison of the delay-dependent conditions for Example 1 

 

Methods 
Maximum allowable delay 

h  
Corollary 8 in Han [26] 

Proposition 11 in Han [26] 
Theorem 2 in this article 

2.0239 
2.0263 
2.1288 
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Figure 1. Stability region for various time delays in Example 2. 
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Figure 2. State trajectories of the system in Example 2. 
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