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Abstract—In this paper, the dynamic equations and error 
reduction of 2DOF gimbal gyros are investigated. One of 
the major error sources in such gyros is the gimbal lock, 
which causes major errors and losing one degree of 
freedom. This error source is eliminated in this paper using 
a permanent magnet motor as the torquer. Moreover, using 
an LQG/LTR controller will guarantee the closed-loop 
system stability. In addition, effects of other error sources 
such as the drift, the measurement noise and the nutation 
are eliminated or reduced. Using the proposed method, one 
can easily measure the output angular rates using 
multiplication of the measured input voltage of the torquer 
and the system scale factor. 
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1. INTRODUCTION 
Inertial sensors such as gyroscopes are important parts 

of Inertial Navigation Systems (INS) that measure vehicle 
angular rate or deflection angle. Therefore, even a slight 
error in gyro outputs could lead to serious errors and 
malfunction of the system and results in severe system 
performance degradation. Hence, it is very important to 
detect and remove the faults effects in gyros. 

Mechanical gyros are the first and very important types 
of gyros, which have many applications with their various 
types. There are two important types of mechanical gyro: 1) 
rate gyros and 2) displacement or free gyros, which 
measure the angular rate and the deflection angle of the 
vehicle, respectively. These gyros exist in single and two 
Degree-of-Freedom. The most important type of the 
mechanical gyros is the Dynamically Tuned Gyro (DTG) 
and gimbal gyro. Gimbal gyros could be used as the rate 
gyro or the free gyro; DTGs are usually used as the free 
gyro to measure the deflection angle. 

Single DOF (SDOF) gyros have been widely studied in 
the literatures. Although various algorithms have been 
developed to investigate the faults in gyros and INS, few 
results dealt with specific faults and sometimes the faults 
are left undefined or are only handled based on very 
simplified assumptions. In [1] a robust Kalman filter is 
applied to eliminate some faults. However, the fault 
characteristics are not described from an engineering point 
of view. In [2] and [3] the gyro failures are classified as the 
hard and soft failures. The hard failures are modeled by 

zeroing out the corresponding rows in the measurement 
matrix while the soft failures are simulated by either adding 
biases or increasing the variance of the noise at the gyro 
outputs. Zhang and Jiang [4] have adopted a similar 
formulation for hard gyro failures in their investigation of 
fault-tolerant control systems; later they continue their 
research on analysis of various faults sources in rate gyros 
[5]. 

Due to the fact that there is no noticeable research on 
2DOF mechanical gyroscopes, this remains already an open 
problem in the control and INS literatures. In this paper, 
dynamic equations and error reduction of such gyros are 
investigated. By designing a suitable controller and using a 
permanent magnet motor as the torquer, the effects of the 
bias and drift errors and measurement noise are reduced. 
The advantages of this methodology are eliminating the 
gimbal lock phenomenon and disturbances, and reducing 
the effect of other common faults such as nutation and 
noises. The gimbal lock is a major error source, which 
occur in 2DOF gyros and can cause loosing one degree of 
freedom. In this way, the measured angular rates are 
obtained form the product of the measured torquer input 
voltage and the system scale factor. 

In this paper, an LQG/LTR controller, which involves a 
Kalman filter and an LQR controller, is used to guarantee 
the stability of the closed-loop system and reduce the effects 
of disturbances and measurement noises. One of the main 
advantages of the proposed method is that it can be easily 
implemented. 

This paper is organized as follows. Section 2 shows how 
to obtain nonlinear equations of the 2DOF gimbal gyro, 
followed by linearization about the zero equilibrium point, 
which provides linear state-space equations of the 
gyroscope. In Section 3, the control structure and the 
system scale factor is investigated. Section 4 defines 
important error resources of gyroscope. Section 5 provides 
simulation results of the closed-loop system, where failures 
are also considered. Section 6 concludes the paper. 

 
Notations: The following notations are used in this paper: 

(X, Y, Z): inertial coordinate axis 
(x, y, z): moving (body) coordinate axis  

sω : speed of spinning 
ω : angular velocity of gyroscope 
Ω : angular velocity of vehicle 
ω& : angular acceleration 
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I : inertial momentum 
H : angular momentum of rotor 
D : damping coefficient 
C : spring constant 
T : torque about output axis 
θ : gimbal deflection 

2. MODEL OF 2DOF FREE GYROSCOPES 
Gyros measure the roll, yaw, and pitch angles of a 

vehicle. Figs. 1 and 2 show the common configuration of a 
gimbal gyro, including a 2DOF gyro, springs, which 
restrain the gimbals from precessing, dampers that damp 
out oscillations, and pickoffs that generate electrical output 
signal proportional to the angle of gimbals from the zero 
position. 

Mathematical Model of a 2DOF Gimbal Gyro 

To obtain the gyro dynamic equations, first consider the 
way one can bring gimbals to the final position (Fig. 3). 
This action consists of xθ degrees of rotation about the X-
axis followed by yθ  degrees of rotation about the Y-axis. 

It is assumed here that sω  has a negligible change, 
inertial momentum of gimbals x and y are equal 
( yxI I I= = ), and gimbals can rotate freely. There is also 
a torquer for each gimbal that causes gimbals to rotate only 
less than 1±  degree. Hence, 
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The angular rate of the gyro and the vehicle about the 
inertial coordinate axis are 
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Referring to Fig. 3, ω  and ω&  can be found as 
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Replacing (4) and (5) in Euler equation and simplifying 
yields the dynamic equations of the gyro as [6] 
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Figure 1 - A simplified illustration of a 2 DOF mechanical free gyro 

 

 
Figure 2 - Spring, damper and pickoff of a gimbal 

 

 
Figure 3 - The manner of arriving gimbals at final position 

 
To obtain the state-space equation of the gyro, the 
following state variables are defined 
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which lead to  
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Linearizing (9) about the zero equilibrium point yields the 
linear time-invariant model of the gyro. The state-space 
model of this linear system is equal to 
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Figure 4 - Control structure of closed-loop system 

 
Table 1: Nominal value of gyro parameters 

Parameter Description Value 

H  Rotor angular momentum (Kg.m2/s) 0.075 

xD , yD  Damping coefficients of two axis (Pa.s) 0.05 

xC , yC  Spring constants of two axis (N/m.rad) 1 

I  Gimbal moment of inertia (kg.m2) 2.34x10-4 
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3. CONTROL STRUCTURE OF THE SYSTEM 
The closed-loop system includes the gyroscope, the 

pick-off, the torquer, and the controller. A Microsyn with 
0.01 degree of accuracy is used as the pick-off and a 
permanent magnet motor is employed as the torquer. Fig. 4 
shows the control structure of the closed-loop system. 

An oscillator is used to apply the AC signal to the 
primary coil of the microsyn and to the first input of the 
demodulator. The microsyn is arranged such that a 
rotational displacement in the output shaft produces an 
output signal in the secondary coil that is proportional to 
the amplitude and direction of the rotational displacement 
of the shaft; then, the produced signal is applied to the 
second input of the demodulator. The demodulator 
produces a relatively slowly varying displacement 
modulation signal v, which is the input to the controller [7]. 
Then, the control signal u is applied to the torquer, which 
results in producing the required torque in order to bring 
the gimbals to their equilibrium point. 

Therefore, the control aim is to keep gimbals in their 
equilibrium point. In this case, the measurement angular 
rates of the vehicle can be obtained by multiplying the 
measured control signal by the system scale factor. 

System Scale Factor 

In this section, the scale factor of the closed-loop system 
is investigated. From the block diagram shown in Fig 5, the 
closed-loop gain is equal to cl tK k H= , where tk  is the 
scale factor of the torquer. The transfer function of the 
torquer that is used in this structure is equal to 

8.273)+(s 818.2)+(s
4.224)+(s 47.9915

==
u
TG c

t ,            (11) 

where the numeric values are obtained from a typical 2DOF 
gimbal gyro. Hence, the scale factor of torquer is equal to: 

vmNkt /.0299.0=                       (12) 
Finally, the measurement angular rates of the vehicle will 
be achieved using the following equation: 

uKcl ×=ω                               (13) 
Table 1 shows the nominal values of the gyro parameters. 

4. NATURE OF FAULTS CONSIDERED 
Some of the most important error sources in gyros are 

spin motor, flex leads, ball bearings, mass imbalance, 
dampers, springs, pick-offs, and environments [6]. The 
sources of these errors are mostly: nonlinearity effects of 
the change in temperature on system parameters, unsuitable 
feeds, friction, and asymmetry. Among these, effects of the 
temperature change can cause serious errors. There are 
other sources of major errors such as gimbals reaction and 
nutation, which affect the transient response of the closed-
loop system. The controller should remove these errors 
from the system response. 

The following errors are considered in this paper: 

(1) Bias: a constant offset between the input and output of 
the gyro 

(2) Drift: a time-varying offset at the output of the gyro 
that can be characterized as: 

• Random drift: random changes in the direction 
and/or the magnitude of the gyro error over time 

• Systematic drift: can be modeled deterministically 
with the particular dynamics involved 

(3) Measurement noise: an error due to measurements 
such as A/D or pick-off resolution (about 0.01°). 

5. SIMULATION RESULTS 
In this paper, the LQG/LTR method [8] is employed to 
achieve the control goals. Fig. 5 shows the block diagram 
of the control structure, where 

• e : input error torque 
• w : disturbance torque involving drift and bias errors 
• inT : gyro input torque (due to vehicle movements) 
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Figure 5 - Block diagram of closed-loop control structure 
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Figure 6 - Sensitivity (-) and closed-loop transfer (--) functions 
 
• θ : gimbals position (should always be zero) 
• n : measurement noise 
• u : control signal 
• cT : control torque 

 
The weighting function iW  is applied for the integral 

action and is equal to 
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The controller J  consists of a Kalman Filter and an LQR 
controller. Because of the nature of these two parts, stability 
of the closed-loop system is guaranteed inherently. Thus, 
the control problem reduces to design a Kalman and an 
LQR gains. The state-space equations of the controller is 
 

















−

−−
=









n

j

c

ffc

n

j

v
X

K
KCKBKA

u
XJ

0
:

&
       (15) 

where fK  and cK  are the Kalman and LQR gains, 
respectively, and A, B  and C  are the state-space 
matrices of the system, which consists of the gyro, the 
torquer, the pick-off and iW . fK  and cK  should be 
designed such that all poles of the closed-loop system lay in 
the left half of the s-plane. 
Fig. 6 shows the sensitivity ( S ) and the sensitivity 
complement (T ) of the system. According to this figure, 

1.27T ∞ = . Therefore, the closed-loop system should have 
good robustness behavior when it encounters parameter 
changes and disturbances. Fig. 7 shows measurement of 
angular rates, desired outputs and gimbals position of the 
nominal closed-loop system without any disturbance and 
measurement noise. 

In order to show the behavior of the designed controller, 
four faults (given in Table 2) are examined. The simulation 
results are shown in Figs 8--10. As these figures show, the 
closed-loop system has good robustness against these faults. 
Therefore, the control requirement (i.e. fixing gimbals at 
the equilibrium position) is satisfied. 
 Bias and other similar changes in the parameters, which 
cause change in the scale factor, should be measured before 
starting the vehicle. If the scale factor changes while the 
vehicle is working, the output may contain errors. 
Therefore, bias and other similar changes in the scale factor 
should be measured and the standard deviation and the 
mean of changes should be updated daily. By using these 
parameters, the measurement accuracy can be increased 
during the system operation. 

6. CONCLUSION 
In this paper, dynamic equations and the control of the 

2DOF gimbal gyro was considered. This proposed method 
can eliminate gimbal lock and some disturbances in such 
gyros and reduce the effects of some faults such as nutation, 
bias, drift, and measurement noises. The gimbals are held 
in their equilibrium position using an LQG/LTR controller 
which also stabilized the closed-loop system. The output 
measurement angular rate was achieved via the torquer 
input voltage multiplied by the system scale factor. Further 
works include improvement in the measurement accuracies 
and robustness of the closed-loop system against effects of 
changes in the temperature on system parameters and 
eliminating the nutation fault in such gyros. 
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Table 2: most common faults 
Fault pattern Simulated fault value Description of fault Case No. 

Bias 0.1746 (equal to 0.013 rad/s) Constant Parasitic torque (N.m) 1 

Random drift Standard deviation 0.01 Random disturbance (N.m) 2 
Systematic drift 1° per 10 minutes Time varying parasitic torque (N.m) 3 

Pick-off Measurement noise Standard deviation 1.4 x 10-4 
(equal to 0.01°) Random measurement noise (volts) 4 

 
Figure 7 - Nominal response of 2DOF gyro including gimbal position, desired angle (−), measured angular rate (--)  
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Figure 8 - Fault illustration under cases #1, #2 and #3 (bias, random and systematic drift) 
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Figure 9 - Fault illustration under case #4 (measurement noise) 

 
 

0 5 10 15 20 25 30 35 40
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Gimbal Position on Roll Axis

θ x [D
eg

re
e]

Time [Sec]
0 5 10 15 20 25 30 35 40

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Gimbal Position on Yaw Axis

θ y [D
eg

re
e]

Time [Sec]

0 5 10 15 20 25 30 35 40
-0.02

0

0.02

0.04

0.06

0.08
Desired and Closed-Loop Angular Rate on Roll Axis

ω
x [r

ad
/S

ec
]

Time [Sec]
 

 
Desired
LQG/LTR

0 5 10 15 20 25 30 35 40
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
Desired and Closed-Loop Angular Rate on Yaw Axis

ω
y [r

ad
/S

ec
]

Time [Sec]

 
Figure 10 - Fault illustration under cases #1 to #5 (all patterns) 
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