
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.  Introduction 
Control system design for complex nonlinear systems has been widely studied in the last decade. Many 
remarkable results in this area have been reported, including feedback linearization techniques (Isidori 1989, 
Esfandiari and Khalil 1992), backstepping design (Krstic et al. 1995) for systems with unmatched 
uncertainties (Koshkouei et al. 2004).  For uncertain systems, sliding mode control approaches have been 
developed by some researchers (Zinober 1990, 1994; Levant 2003, 2005). In these methods, the controller 
gains are computed using upper bound information on the system uncertainties, which is normally 
unavailable and there is no direct method to obtain them.  Therefore, these methods may yield 
overestimation resulting from a conservative design. To overcome this problem, several adaptive schemes 
have been developed for affine nonlinear systems in order to deal with the problem of parametric 
uncertainties (Marino and Tomei 1995, Khalil 1996). 

During the last decade, adaptive methods based on Neural Networks (NNs) have been developed to 
control uncertain nonlinear systems by removing the unknown nonlinear part of the system. Most of these 
approaches have been proposed for affine systems (Lewis et al. 1995, 1996) and some of them consider non-
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Abstract 

This paper presents a direct adaptive output feedback control design method for uncertain non-
affine nonlinear systems, which does not rely on state estimation. The approach is applicable 
to systems with unknown but bounded dimensions and with known relative degree.  A neural 
network is employed to approximate the unknown modeling error.  A neural network is employed to 
approximate and adaptively make ineffective unknown plant nonlinearities. An adaptive law 
for the weights in the hidden layer and the output layer of the neural network are also 
established so that the entire closed-loop system is stable in the sense of Lyapunov. Moreover, 
the robustness of the system against the approximation error of neural network is achieved 
with the aid of an additional adaptive robustifying control term. In addition, the tracking error 
is guaranteed to be uniformly and asymptotically stable, rather than uniformly ultimately 
bounded, by using this additional control term. The proposed control algorithm is relatively 
straightforward and no restrictive conditions on the design parameters for achieving the 
systems stability are required. The effectiveness of the proposed scheme is shown through 
simulations of a non-affine nonlinear system with unmodelled dynamics, and is compared 
with a second-sliding mode controller. 
 
Keywords: Discontinuous controllers, Output feedback; Nonlinear systems; Adaptive control;  
Neural networks 



affine systems, based upon the state feedback (Kim and Calise1997, Park and Park 2003) or output feedback 
(Ge et al. 1999, Ge and Zhang 2003, Hovakimyan et al. 2002). In particular, because of approximation 
errors inherent in NNs, when the number of neurons is limited or initialization of weights are not suitable, 
most of these methods can guarantee only uniformly ultimately bounded (UUB) stability. To remove this 
obstacle and to compensate the reconstruction errors, the method has been widely used in which an extra 
non-adaptive robustifying input term is considered based on information about bounding constants of system 
uncertainties which may be unavailable. This approach may results in a conservative design (Lewis et 
al.1996, Polycarpou and Mears 1998, Seshagiri and Khalil 2000, Park and Park 2003).   
An adaptive method combined from the classical sliding mode (Koshkouei and Zinober, 1998) and neural-
network techniques have been presented by Wai (2003) for the control of a rigid-link robot manipulator 
model. The method is based upon the equivalent control, which needs the observability of all system states 
and an estimate of the upper bound of uncertainties.  

 In this paper, an adaptive robustifying control term is proposed using the system output of the system 
which guarantees the robustness of system against approximation error of NN and assures the asymptotic 
stability of tracking error.  Therefore, the overall proposed control law is based on output feedback control 
methods and estimation of states is not required. In addition, it is not necessary the plant dimension to be 
known a priori and for designing the controller, only the relative degree of   the system is required. Since the 
control law comprises of stabilizer, adaptive and robustifying terms, the closed-loop system is robust against 
unmodelled dynamics and asymptotic stability of the system is assured. In addition, the method is applicable 
to a class of nonlinear systems with any relative degree. The method is based on strictly positive realness 
(SPR) condition of the closed-loop error dynamics, the Kalman-Yakobovich’s lemma, as well as NN 
techniques.   

The paper is organised as follows: Section 2 describes the class of nonlinear systems to be controlled and 
the problem of the tracking error. The controller design procedure and approximation properties of the NNs 
are addressed in Section 3. In Section 4, the stability of the closed-loop system is proved through analytical 
work. An example which illustrates the effectiveness of the proposed controller is presented in Section 5. In 
this section, the simulation results have been compared with a second-order sliding mode controller. 
Conclusions are given in Section 6. 
 
2.  Problem statement 
Consider the nonlinear SISO system 
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where n
x R∈ Ω ⊂x  is the state vector on the compact set xΩ as an operating region, uu R∈Ω ⊂ is the input 

on the compact set uΩ , and y R∈ is the output. The mapping 1: n nR R+ →f  is an unknown smooth vector 
field and : nh R R→  is a smooth and known real function. Assume that the relative degree of the system (1) 
is r n≤ . Under this assumption, there is a diffeomorphism transformation 
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which transforms the system (1) in to the following normal form with a new coordinate 
[ ] [ ]1 1, ..., , , ...,r r n, z z η η+=z η   (Isidori 1995) 
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Assumption 1: The zero dynamics of system (2), ( ),=η w 0 η&  are exponentially stable. Moreover, the desired 
trajectory and its derivates are bounded such that the internal dynamics remain bounded. 
 
Assumption 2: Assume that ( )1 , , 0ub b u u= ∂ ∂ ≠z η . This condition implies that the smooth function ub  is 
strictly either positive or negative on the compact set  

( ) ( ) ( ){ }, , , , ;x uU u u= = Φ ∈Ω ∈ Ωz η z η x x  
From (2), the input-output relation of system is 

                              ( )
1( ) ( , ).ry b u b u= =z,η, x                     (3) 



This paper addresses the design of an output feedback control law that utilises the available 
measurement ( ),y t  to obtain system output tracking of a bounded trajectory ( )dy t  that is assumed to be r-
times differentiable. The difference between unknown dynamics function b  and its estimate b̂ (i.e. the 
modelling error) is mapped using a Neural Network (NN). This mapping has to be based on measured input 
and output data only. The universal approximation property of NNs and the observability of the system are 
utilised to construct this mapping online using measured input/output time histories. Also, a robustifying part 
is designed to guarantee the robustness of the system against the mapping error. These various features of the 
proposed control design scheme are presented in the next section. 
 
3.  Controller design  
3.1.  Error dynamic and the control  structure 
Assume that ˆ( , )b y u  is an appropriate approximation of ( , )b ux .  Consider the pseudo control  

ˆ( , )b y uν =                                  (4) 
Then the modelling error is  

                         ˆ( , ) ( , ) ( , )u b y u b u∆ = −x x                                  (5) 
Using (3), (4) and (5) the system dynamic can be expressed as 
                  ( ) ˆ( , ) ( , ) ( , )ry b y u u uν= − ∆ = − ∆x x                     (6) 

Equation (6) represents the dynamic relation of r integrators between the pseudo control ν and the system 
output y, where the modelling error ( ),u∆ x acts as a disturbance signal. It is required that the system output y 
tracks a known and bounded reference dy .  Select the pseudo control  

                           ( )r
d L ad Ry u u uν = + + −                                          (7) 

where ( )r
dy  is the r-derivative of the desired output dy , Lu  stabilises the closed-loop system, adu is the 

adaptive part and it cancels out the modelling error ( , )u∆ x  whilst the control part Ru is proposed to achieve 
robust asymptotic stability. The robust control Ru  could be continuous or discontinuous. In particular, one 
may consider a sliding mode control since it is robust in the presence of uncertainties.  

Now, substituting (7) into (6), the closed-loop error dynamic can be presented as 
( )( ) ( , )r

L ad Re u u u u= − + ∆ − +x                   (8) 
It is important to point out that the model approximation function ˆ( , )b ⋅ ⋅  should be defined so that it is 
invertible with respect to u, allowing the actual control input to be computed by  

1ˆ ( , )u b y ν−=  
As stated, adu is designed to cancel the unknown modelling error 1ˆ( , ) ( , ( , ))u b y ν−∆ = ∆x x whereas ∆  depends 
on ( )adu t  through ν . So, there exists a fixed point problem 

         ( )1 ( )ˆ( ) ( ), ( , )r
ad d L ad Ru t t b y y u u u−= ∆ + + −x                      (9) 

The following assumption provides conditions that guarantee the existence and the uniqueness of a solution 
for adu . 
 
Assumption 3: The map adu → ∆  is a contraction over the entire input domain. This means, the following 
inequality should be satisfied: 
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Using (4), (5), (7) and (10) implies         
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which can be rewritten as 
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Condition (11) is equivalent to the following two conditions: 
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Hence, ˆ( , )b y u should be selected such that it satisfies the conditions (12). When ( , )b ux  is unknown, a 
simple choice for approximation is ˆ( , )b y u cu= , where c is a suitable constant. 
 
3.2.  Construction of SPR Error Dynamic 
In this section, a strictly positive realness (SPR) property of closed-loop error dynamic is studied. Assume 
that Lu is a suitable filter with the following structure 
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and filtered error signal e% is defined as 
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where minimum phase filter ( )adG s is selected so that (0) 0adG ≠ . This signal is constructed to ensure a 
realizable error signal that is used to adapt the NN weights, and for designing   Ru . 
 

Using (8) and based on the compensator defined in (13) and (14), the closed-loop transfer function of the 
system depicted in Figure 1, can be written as 

( )( )( ) ( ) ( , ) ( )ad Re s G s u u u s= ∆ − +x%                     (15) 
where 
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in which r is the same as in (2). Analysing the denominator of (16), the Routh-Hurwitz stability criterion 
implies that a necessary condition for the closed-loop system stability is that the polynomial r

L Ls D N+ is 
complete, i.e. all of the polynomial coefficients should be nonzero. Therefore, the degree of the compensator 
numerator LN (and hence LD ) should be at least 1r − . Thus, k is defined as 

deg( ) deg( ) 1L Lk D N r= ≥ ≥ −                     (17) 
In addition, to simplify the design procedure, adD  and LD  are selected such that 

deg( ) deg( )ad LD D=                                       (18) 
Hence, the relative degree of ( )G s is 

deg( )adk r Nρ = + −                                     (19) 
where deg( )adN k≤ . Therefore, rρ ≥ .  As it is shown in Section 4, the NN adaptation rules is realizable (i.e. 
dependent on available data only), the transfer function G(s) must be strictly positive real (SPR). However, 
the relative degree of G(s) is at least r. When the relative degree of G(s) is 1, it can be made SPR by a proper 
construction of ( )adN s . If 1ρ > , then G(s) cannot be SPR (Narendra and Annaswamy 1989). To achieve SPR 
when 1ρ > , a stable low pass filter ( )T s is introduced such that                     

deg( ) deg( ) 1adN T k r+ = + −                                 (20) 
Hence, the new filtered error dynamic is      

( )( )1
ad( ) ( ) ( ) ( , ) ( )Re s G s T s u u u s−= ∆ − +x%                     (21) 

where ( )G s  can be represented as 
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Since ( )G s  is a stable transfer function, its zeros (the roots of adN and ( )T s ) can be appropriately placed to 
make it SPR. Moreover, it is important to note that ( )T s  should be designed such that the step response of 

1( )T s−  has no overshoot. This is a mild constrain that is used in stability proof.  
Hence, the state space model of closed-loop error dynamic (21) can be represented as 
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According to the Kalman-Yakobovich lemma, the strict positive realness of ( )G s assures the existence of a 
matrix 0T= >P P  which satisfies  

                       T
cl cl =+ −A P PA Q                                    (24) 

and 
                cl cl=Pb c                                            (25) 

where 0T= >Q Q  is an arbitrary weighting matrix..  
 
3.3. Neural Network-Based Approximation 
In the following lemma, it is shown that the modelling error ( , )u∆ x  can be approximated by a neural 
network, based on input-output data only. Moreover, it is proved that if any non-affine system satisfies 
conditions (12), then it is unnecessary to use ( )adu t  as an input signal to NN. So, it is possible to employ 
static NN rather than recurrent NN to approximate ( )adu t . 
 
Lemma 1: If conditions (12) are satisfied, then, modelling error ( , )u∆ x can be approximated by a static 
single hidden layer Multilayer Perceptron (MLP) as ( )T Tw σ V ζ , where mR∈w  is a vector containing 
synaptic weights of the output layer, N mR ×∈V  is a matrix containing the weights for the hidden layer, 

( ) mR⋅ ∈σ is a vector function containing the nonlinear functions in the neurons of the hidden layer, and 
NR∈ζ  is the input vector, which is equal to [ ]1 ,T

adα=ζ y u u where 
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in which ( ) .r
ad d L Ru u y u uα ν= − = + −  

Proof: Under the observability condition of system (1), it is shown that the continuous-time dynamic 
( ),u∆ x can be approximately reconstructed using delayed inputs and outputs (Lavertsky et al. 2003) 

( ) 1( , ) F ,u y ν ε∆ = +x                                 (27) 
where 

[ ]1 1( ) ( ) ( ( 1)) ,d dt t T t T n r n nν ν ν ν= − − − − ≥L , and 1 1Mε ε≤ , in which 1Mε  is proportional to sampling 
time interval dT . Hence, 1ε  can be ignored by selecting dT  sufficiently small. 

In addition, in Section 3 it was shown that the conditions (12) guarantee the existence and uniqueness of 
solution adu  from the following equation: 

               ( )( , , ) , ( ) 0ad adM u u u u t= ∆ − =x x                           (28) 
Differentiating M with respect to adu and using (4) and (5) yields 
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which is nonzero by Assumption 2 and using (4). Thus, from (29), according to the implicit function theorem 
and using (27) 

( ) ( ), ( ) F , ( ) ( ) 0ad ad ad adu u t y u u u t u tα∆ − = + + − =x             (30) 
which implies that there exists a unique solution for adu  as 



          ad ( ) ( , , )adu t y u uα= Γ                             (31) 
Using (31) in (30) yields  

                                       ( , ) ( )u∆ = Γx ζ                                         (32) 
On the other hand, any sufficiently smooth function can be approximated on a compact set with an arbitrarily 
bounded error by a suitable large MLP (Hornik et al. 1989). Therefore, on the compact set Ωζ , a set of ideal 
weights *w and *V exist such that 

                          ( ) * *
2, ( )T Tu ε∆ = +x w σ V ζ                             (33) 

where 2 2Mε ε≤ and 2Mε depends on the network architecture. The ideal constant weights *w  and *V  are 
defined as 
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in which ( ){ }F F
,, M MΩ = ≤ ≤w w Vw V w V and M w  and M V  are  positive numbers, and F⋅  denotes the 

Frobenius norm.                                                                                                      
However, in practice, the weights of neural network, which constructs adu to cancel out ∆ , may be 

different from ideal ones, so an approximation error occurs. 
 

Lemma 2: The approximation error, which arises from the difference between (33) and output of NN 
satisfies the following equality: 
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m mR ×∈σ&  is the derivative of σ  with respect to the input signals of all neurons in the hidden layer of NN, and 
( 0,1, 2)ic i =  are positive constants. 

Proof: Note that the disturbance term ( )tδ is bounded with input of neural network, rather than filtered 

tracking error. Using the Taylor series expansion of *( )Tσ V ζ yields 
( )*( ) ( ) ( ) ( )T T T T T T= + = + + ⋅σ V ζ σ V ζ V ζ σ V ζ σ V ζ V ζ O% %&           (37) 

where mR∈HOT  denotes the vector of high  order terms. Note that, ( )⋅σ  and its derivate are bounded, then 
( )⋅O  is also bounded and can be represented as 
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where 0k  and 1k are positive constants. Using (36) and (37), the approximation error can be calculated as 
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Define  
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T T Tδ ε= + ⋅ +w σV ζ w O% &  

Using (34) and (38) it is obtained 
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4. Stability analysis  
In this section the asymptotic stability of the error system will be proved. Based on the results of subsection 
3.3, the system (23) is first converted into a new form. Then, a lemma is presented which is needed for the 
proof of the system stability theorem.  

Substituting (35) into (23), the closed-loop error dynamic can be represented as 
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and consider the discontinues control signal  
                                 ( )sgnRu g eϕ= − %                                     (39) 

where ϕ  is an adaptive gain and g  is a function of NN weights and input vector ξ . Using the 
equality tr( )T T T T=w σV ζ V ζw σ% %& & , the closed-loop error dynamic is now as 
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Here, ,V w% % and ( )sgn eϕ %  are time varying signals. Hence, the transfer function operator in (40) is not 
commutable. Now, consider the following error terms  
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for which the following bounds can be defined 
3 4 5F

, ,c c cϕδ δ δ ϕ≤ ≤ ≤w Vw V%%                   (42) 
With the positive numbers 3 4 5, andc c c . Substituting (41) in (40) yields 
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In order to show that the system is asymptotically stable, using the proposed control method, the following 
lemma is needed. 

 
Lemma 3: The following inequality holds: 
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Assume that g is a positive signal. Then the low pass filter 1( )T s−  is designed such that its step response 
has no overshoot and 1( )T s g− remains positive. By suitable initialization of filter states, 0 1λ< <  is found 

such that 
1( )T s gg
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Therefore, *ϕ may be selected as 
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Theorem: Consider the discontinuous control (39) and select the adaptation laws for NN weights, and the 
gain of the robustifying termϕ  as 
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Then, the closed-loop tracking error is asymptotically stable and the weights of NN remain bounded.  
Proof: Define the Lyapunov function  
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where P is the unique positive-definite symmetric solution of (24) for q=Q I  (q>0), and *= −%ϕ ϕ ϕ . 
Moreover, assume that *w  and *V are ideal constant weights defined in (34). Then, from (36) 
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From (23) and (25)  
                                                      T

cle = ξ Pb%                                       (50) 
Substituting (50) into (49) and using Lemma 3, yields 
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Using the adaptation laws in (47) gives   
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Since L is a positive function and 0L ≤&  , so , ,ξ wV% %  and %ϕ  are bounded. In addition, from (34), *V and 
*w are bounded, therefore, according to (36), V and w remain bounded. Moreover, by integrating (51)  

  ( )
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2 ( ) ( )( ) t tdt L t L tt
q

∞

= =∞≤ −∫ ξ                      (52) 

Since, the right-hand side of (52) is bounded, then, according to the Barbalet’s lemma 
                                               2lim 0

t →∞
=ξ                                               (53) 

Since  T
cle = c ξ% , then  

                                       lim ( ) 0
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e t
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According to the final value theorem and using (14), it yields 
ad0 0

lim ( ) lim ( ) ( ) 0
s s
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Since ad (0) 0G ≠ , one can conclude that 

0
lim ( ) 0
s

s e s
→

=  
so  

lim ( ) 0
t

e t
→∞

=                                            (55) 
which completes the proof.                  
      
Remark 1: The proposed control law in (7) consists of two parts: ( )r

c d L adu y u u= + +  and a robustifying term 

Ru . When the system dynamics is exactly known i.e. ˆ( , ) ( , )x u b b x u∆ = − , then one may select ( , )adu x u= ∆ . 
Then, (15) implies 0e =% .  In this case, from (14) ( ) 0adN s e = . Since ( )adN s is a Hurwitz polynomial, the 
asymptotic stability of the system can be achieved. On the other hand, in the presence of parameters variation 
or unmodeled dynamics and/or external disturbances, the system dynamics includes these uncertainties.. In 
this case one can not find an explicit form for adu . Hence, a neural network is used to approximate adu . 
However, due to the approximation error inherent in neural networks, it is impossible to guarantee 0e =% . To 
overcome this problem, a discontinuous part sgn( )Ru g eϕ= − %  is considered with cu   which ensures the 
stability of the error dynamics e% . The amplitude of this part is proportional to the approximation error. Now, 
according to given theorem, applying c Ru u+  to the system yields 0e →%  as t → ∞ .  Hence, the error system 
trajectories tend to an equilibrium point.  To this end, the gain ϕ  is selected sufficiently large.           
 
Remark2:  When a discontinuous control is applied to a system, the phenomenon, called chattering, appears. 
Many methods have been proposed in the literature to reduce chattering including continuous approximation 
of the discontinuous control. A continuous approximation of ( )sgn e%  in (39) is the saturation function 

( )
( )sgn if

sat
otherwise.

e e
e e

ε

ε

 ≥
= 



% %
% %                                 (56) 

Alternatively, one may consider the smoothing function ( )tanh e%
ε  or e

e δ+
%

%
where  0ε >   and  0 1δ< <  as an 

approximation of ( )sgn e% . 
Figure 2 shows the block diagram of the system with the proposed control method in which TDL stands 

for the tapped delay line. 
Note that, if there is a finite time st  such that 0e =%  for all st t≥ , then the system trajectories move towards 

the sliding surface 0e =%  and tends along this surface to an equilibrium point (Koshkouei and Zinober 1998). 
The control (39) guarantees the robustness of the method in the presence of disturbances or unmodelled 
dynamics provided that the gain ϕ  is selected sufficiently large. 

 
5.  Example 
The performance of the proposed controller is illustrated by considering the following non-affine nonlinear 
system 
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The relative degree of the system with output y is r = 2. In fact, the zero dynamic of the system is 
3 30.8x x= −& , which is asymptotically stable. Therefore, in practice it is assumed that the system is modelled 

as a second order nonlinear plant, whose realization consists of states x1 and x2 (state x3 is omitted) and the 
output is modelled as 1y x= . Hence, the system without unmodelled dynamic can be represented as 
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Note that Assumption 2 is satisfied; i.e.  
2

1 2
( , ) 3(2 ) 0b x u x x u

u
∂

= + >
∂

 , uu∀ ∈Ω ∈ Ωxx  

An appropriate available approximation of ( , )b ux is selected as ˆ( , )b y u cuν = = , where c is a constant whose 
value depends on dy and dy& , and should be selected such that condition (12) is satisfied. In this example 

2c =  is selected. 
The second order compensator 

( )
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L

N s s
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+
 

is selected to stabilize the linear second order system Le u= −&& . 
Now, based on the assumptions on adN  and adD  in Section 3, the following filter is used to construct the 

error signal e%  

( ) ( )
2
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ad

6 650 .
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N s s
D s s

+ +
=
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It is desired that the above filter has high bandwidths. Finally, ( ) 0.5 1T s s= + is selected based on SPR 
property of G . 

The NN is of MLP type and has 20 neurons in the hidden layer with tangent hyperbolic activation 
functions. The weights are initialised randomly with small numbers. The input to the NN for 1 4n n= ≥  is 

[1, ( ), ( ), ( 2 ), ( 3 ), ( ), ( ), ( )]Tadd d d d dy t y t T y t T y t T u t u t T u t Tα α= − − − − −ξ with 2 msecdT = . Also, the learning constants are 
chosen as 0.9 and 0.1ϕγ γ γ= = =w V . The reference dy  is a step signal, which is passed through a second 
order filter with transfer function 22 /( 1.6 2)s s+ + . And finally, to avoid chattering, ( )tanh 0.9e%  is used as a 
continuous approximation of ( )sgn e% .  

Simulation results are depicted in Figures 3-10. First, the controlled system performance is evaluated 
without the unmodelled mode dynamics. Figure 3, shows the system response when only the linear controller 
is applied.  It is clear that the system response has high oscillatory behaviour and almost unstable because of 
the nonlinearities in the system. 

Figure 4, compares the system response with two different control laws. First, simulations have been 
performed with the linear Lu and adaptive control term adu but without the robustifying term R .u  Then, both 
the adaptive and the robustifying terms have been used together with Lu . As Figure 4 shows, by using the 
adaptive term, the oscillations are almost eliminated but there is a tracking error because adu  is not 
completely able to cancel out ∆  (Figure 5). 

By adding the robustifying part, the desired tracking is asymptotically achieved. Figure 6 shows the action 
of the control signals. At the stating time of the simulation, a large approximation error has occurred because 
of unsuitable weight initialization. In order to compensate this error, the robustifying control term becomes 
large and chattering phenomena emerges out. But, after this transition, the approximation error is reduced 
and the chattering is removed from the control signal.  The norms of weights are depicted in Figure 7, which 
shows that the weights remain bounded. 

Next, the effect of the unmodelled dynamics is examined and the simulation result is shown in Figure 8, 
which demonstrates that the proposed robust adaptive control law can compensate the effect of unmodelled 
dynamics appropriately.  

Finally the proposed robust adaptive controller is compared with remarkable new output feedback second-
order sliding mode control method, presented by Levant (2005). The sliding mode controller has been 
designed as in Levant (2005) with 1α =  which is the gain of the sliding mode controller, and differentiator 
parameter L=40. Figures 9 and 10 show, the both controllers yield good tracking and are robust in the 
presence of uncertainties and unmodelled dynamics. But, the gain of the second-order sliding mode control is 
non-adaptive and is designed based on upper bound of uncertainties so this conservative design causes that 
the control signal contains chattering while the robust adaptive approach has smoother control signal.     
 



6.  Conclusions 
In this paper, a direct adaptive output feedback control method has been developed for uncertain non-affine 
nonlinear systems that do not rely on state estimation. Moreover, it has been shown that the use of an 
additional robustifying part of the control guarantees the uniform asymptotic stability of the tracking error 
system. Without this control part, only the uniform ultimately boundedness of the tracking error system is 
demonstrated. The proposed control algorithm is relatively simple and requires no restrictive conditions on 
the design constants for the stability. The efficiency of the proposed scheme has been shown using the 
simulation of a nonlinear system with unmodelled dynamics. The simulation results showed the effectiveness 
of the proposed control method as compared to linear, linear-adaptive and second-order sliding mode 
controllers. Although in the proposed control method, there are some parameters and functions, which should 
be appropriately defined. Nevertheless the proposed method is not very sensitive to these constants and 
functions.  
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Figure 1: Block diagram of error dynamic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Block diagram of the proposed control method. 
 
 

( )
( )

ad

ad

N s
D s

 

 

( )
( )

L

L

N s
D s

 

 

e  e%  

Lu  

( )ad Ru u∆ − +  ( )re  1
rs

 

( )r
dy  

( )1ˆ ,b yν−

 
N.N 

uR(.) 

L

L

N
D  

ad

ad

N
D  

ν  
 u  

adu  

Lu  

Ru  

( ), ,
F

V w ζ

 

e%  

e%  

e  dy  ( , )
( )

u
y h

=
=

x f x
x

&
 

 

TDL 

 
 

 

TDL 



0 5 10 15 20 25 30
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time(sec)

Tracking

Ref.
UL

 
Figure 3:  System without unmodelled dynamics: response with linear compensator. 
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Figure 4: System tracking with adaptive and robust adaptive controls, for system without unmodelled 
dynamic. 
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Figure 5: NN output (uad ) and modelling error ∆ . (a) system without unmodelled dynamic; (b) system with 
unmodelled dynamic. 

 

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3
Control Signal

Time(sec.)

UL+Uad
UL+Uad+UR

 
Figure 6: Control signals  for system without unmodelled dynamics. 
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Figure 7: Norm of weights for system without  unmodelled dynamics. 
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Figure 8: System tracking with adaptive and robust adaptive   controls, for system with unmodelled dynamic. 
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Figure 9: System without unmodelled dynamics, comparison of robust adaptive and 2-sliding mode 
controllers. (a) tracking error; (b) robust adaptive control signal; (c) 2-sliding mode control signal. 
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Figure 10: System with unmodelled dynamics, comparison of robust adaptive and second-order sliding 
controllers. (a) tracking error; (b) robust adaptive control signal; (c)  2-sliding mode control action. 


