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Abstract: This paper presents a simple structure design for bilateral teleoperation systems with uncertainties in time delay in 
communication channel. The goal is to achieve complete transparency and robust stability for the closed-loop system. For transparency, 
two local controllers are designed for the bilateral teleoperation systems. One local controller is responsible for tracking the master 
commands, and the other one is in charge of force tracking as well as guaranteeing the stability of the closed-loop system in presence of 
uncertainties in time delay. The stability analysis will be shown analytically for two cases: I) the possibly stability and II) the intrinsically 
stability. Moreover, in case II, in order to generate the proper inputs for the master controller in presence of uncertainties in time delay, 
an adaptive FIR filter is designed to estimate the time delay. The advantages of the proposed method are three folds: 1) stability of the 
closed-loop system is guaranteed under some mild conditions, 2) the whole system is transparent, and 3) design of the local controllers is 
simple. Simulation results show good performance of the proposed method. 
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1. Introduction 
Teleoperation is one of the important research areas in 
robotics. The concept of teleoperation means manipulating 
in a remote task environment with a slave manipulator 
controlled by a master manipulator moved by the human 
operator, without requiring direct physical contact between 
the operator and the task environment. If the force exerted 
on the slave by the remote environment can be fed back 
to the master robot, which is called force-reflecting 
control in teleoperation systems, and this force in turn is 
applied to the human operator, then the overall 
performance can be improved [1].There are two major 
issues in bilateral teleoperation systems: 1) the stability 
robustness and 2) the transparency performance. If the slave 
accurately reproduces the master's commands and the 
master correctly feels the slave forces, the human operator 
experiences the same interaction as the slave would. This is 
called complete transparency in teleoperation systems [2]. In 
other words, the ideal responses (i.e. the complete 
transparency) for the teleoperation operation system with 
time delay can be defined as follows: 

- The force that the human operator applies to the 
master robot is equal to the force reflected from the 
environment. This can help the operator to realize 
the force sensation. 

- The master position/velocity is equal to the slave 
position/velocity. 

     In practice, due to the existing time delays in 
communication channel and uncertainties in the task 
environment as well as parametric uncertainties in robot 
manipulators, transparency and stability are significantly 
compromised. By considering these issues, different control 
schemes have been proposed in literatures. The most widely 
used control schemes are the passivity theory [3], wave 

variables [4], compliance control [5], and adaptive control 
[6].  

Alfi et al. proposed a simple structure and control method 
for bilateral transparent teleoperation systems in presence of 
uncertainties in time delay [7-9]. In this method, a force 
sensor is used for reflecting the contact force to the 
human operator. The proposed structure takes advantage of 
two local controllers. One controller is responsible for 
tracking the master commands and the other one is in 
charge of force tracking as well as guaranteeing stability of 
the closed-loop system in presence of uncertainties in the 
time delay in communication channel. Therefore, the goal 
of this paper is two folds: 1) developing a simple structure to 
achieve complete transparency and 2) developing the 
stability conditions (intrinsic and possible) for the proposed 
structure in presence of uncertainties in time delay in 
communication channel. 

In possibly stable, stability of the proposed structure 
dependents on the time delay in communication channel. 
On the other hand, in intrinsically stable, stability of the 
proposed structure is independent of the time delay. 
Moreover, in possibly stable, it is assumed that the forward 
and the backward time delays are identical. This constrain is 
removed in intrinsically stable. Furthermore, in the 
proposed control method, an identification algorithm is 
developed, which, in addition to estimate the time delay, 
makes the closed-loop system virtually independent of the 
time delay. In the rest of this paper whenever it is referred to 
“time delay”, it means “time delay in communication 
channel”.  

This paper is organized as follows. In Section 2, the 
proposed control method is discussed. Section 3 describes 
design of the controllers. Analytical work about stability of 
the proposed structure is given in Section 4. Section 5 shows 
the simulation results. Section 6 draws conclusions and 
gives suggestions for the future work. 
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2. The Proposed Control Structure 
The proposed control structure is shown in Fig. 1. In this 

Figure, G , C and y denote the transfer function of the 
local systems, the local controllers, and the outputs, 
respectively, where the subscripts m and s designate the 
master and the slave, respectively. msT  and smT denote the 
forward and the backward time delay, respectively. eF is the 
force exerted on the slave by its environment, eZ is the 
environment impedance, hF  is the force applied to the 
master by the human operator, pK and fK are the position 
and force scaling factors, respectively, sF  is the input force 
applied to the slave, and rF is the reflected force. To correct 
the desired position/velocity, received from the master, 
contact forces are used at the slave robot. Moreover, direct-
force-measurement force-reflecting control method is used 
at the local sites. The main goal of the proposed control 
scheme is to achieve transparency and stability. This can 
be itemized as follows: 

1- The closed-loop of the overall system must be stable 
with some mild and easy-to-achieve conditions. 

2- The position/velocity tracking must be guaranteed. 
This means that the slave output sy  has to follow the 
master output my  with acceptable accuracy. Notice that 
the master and the slave outputs can be considered either 
the position or the velocity. 

3- Force tracking must be guaranteed. That means the 
reflecting force rF  has to follow the operator 
force hF . 

These goals are achieved by designing two local controllers; 
one in the remote site sC  guarantees the position/velocity 
tracking, and the other one in the local site mC guarantees 
the force tracking as well as stability of the overall system. It 
is assumed that pK  and fK  are equal to one and eF  is 
measurable. 
 
3.  Controllers Design   

In this section, design of the local controllers is 
explained. It should be mentioned that, due to the ideal 
response, i.e. complete transparency, the scaling factors 
are set equal to one. 

3.1 The Slave Controller 
For designing the slave controller sC , force 

measurements are used at the remote site. According to 
Fig. 1, if the output of the master and the slave is 
position, then the transfer function from the slave to the 
master can be written as 

( ) ( ) ( )
( ) 1 ( ) ( ) ( )

msTss s s

m e s s s

X s C s G s
e

X s Z G s C s G s
−=

+ +
.   (1) 

Since the forward time delay does not appear in the 
denominator, the transfer function in Eq. (1) is finite 
dimensional. Hence, the time delay will not have any 

effect on the stability of the system. Moreover, one can 
use the classical control methods to design a slave 
controller for the remote site, such that the system in Eq. 
(1) is stable. Therefore, the position of the slave will 
follow the position of the master in such a way that the 
tracking error for position converges to zero. 

3.2 The Master Controller 
The master controller ( )mC s  must assure stability of 

the closed-loop system as well as force-tracking problem. 
Let define the following variables: 

( ) ( )ˆ ( )
1 ( ) ( ) ( )

e s s
s

e s s s

Z C s G s
G s

Z G s C s G s
=

+ +
,           (2)                                          

ˆ( ) = ( ) ( )s mG s G s G s .                    (3) 
Using these variables, the control scheme, shown in Fig. 
1, can be simplified as in Fig. 2. Then, the transfer 
function of the overall closed-loop system can be written 
from Fig. 2 as 

)(

( ) ( )( )
1 ( ) ( )

ms

ms sm

e m

h m

T

sT T
F C s G s eM s
F C s G s e

−

− +
= =

+
.      (4) 

Notice that the local slave controller sC  is designed such 
that the position tracking is satisfied (i.e., the poles of 
ˆ

sG are in the left-hand side of the S-Plane). From Eq. 
(4), it can be observed that the delays are in the 
denominator of the closed-loop transfer function. This 
can degrade performance of the system by reducing its 
stability margin. As a result, one cannot use the classical 
control methods to design a master controller. Hence, 
the problem is to handle the time delay properly, since 
time delay can significantly deteriorate the performance 
of the whole system or even makes it unstable. This issue 
will be addressed in the next section. 
4.  Stability Analysis         

In this paper, two stability methods for teleoperation 
systems are considered: 1) the intrinsically stability and 2) 
the possibly stability. The intrinsically stability guarantees 
stability of the teleoperation system independent of the time 
delay; while possibly stability is referred to as the property in 
which the system is stable for any time delay values as long 
as maxT T≤ . Hence, the possibly criterion assumes a prior 
knowledge on the upper bounds of the delay values [10].  

4.1.  Possibly Stability 
In this paper, the possibly stability is dealt with using 

linear scalar systems. The main feature of these systems is 
that their H ∞  norms are bounded to unity [11]. Let define 

1( ) sTs eδ −=  , 2
1( )

sTes
sT

δ
−−

= − ,            (5) 

such that    
            

Re( ) 0

( ) ( ) 1, 1,2supk k
s

s s kδ δ
∞

≥

= ≤ =         (6) 

In the following theorem, the stable scalar functions (6) and 
the small gain theorem will be employed. Moreover, the 
uncertainties in the dynamics of the feedback system will be 
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modeled with kδ . In addition, it is assumed that the 
forward and the backward time delays are identical. This 
assumption is commonly used in most literatures [12]. 
 

Theorem 1: Consider a control system as in Fig. 2 with 
ms smT T T= = . Let ( )G s  in (3) and the closed-system 

in Fig. 2 be stable with no time delay ( 0T = ). Then the 
closed-loop system is stable if                 

max
max

( ) ( ) 1 , 0 .
1 ( ) ( ) 2

m

m s j

C s G s T T
C s G s T

ω

ω
ω

=

≤ ∀ ≤ ≤
+

        (7) 

Proof: Without loss of generality, the structure given in Fig. 
2 can be rearranged as in Fig. 3, in which ( )G s is defined 
in (3). It is obvious that stability of the closed-loop block 
diagram in Fig. 3 (dashed rectangle designated with 

ˆ ( )M s ) is the same as stability of ( )M s  in (4). That is, 
ˆ ( )M s  can be written as 

             2

ˆ ( ) ( )ˆ ( )
1 ( ) ( )

e m

h m
Ts

F C s G sM s
F C s G s e−

= =
+

.          (8) 

Then, the transfer function of the entire system is 

 2

( ) ( )ˆ( ) ( )
1 ( ) ( )

Ts Tsm

m
Ts

C s G s
M s M s e e

C s G s e
− −

−
= =

+
.     (9) 

Therefore, the master controller must be designed to 
guarantee stability of the closed-loop system ˆ ( )M s . Hence, 
it can be concluded that stability of the proposed closed-loop 
structure is equivalent to stability of ˆ ( )M s . Now, let 

ˆ ( )M s  in Fig. 3 be redrawn as in Figs. 4a and then 4b. It is 
clear that stability of the structure in Fig. 4b is the same as 
stability of ˆ ( )M s . 

Now, let 
( ) ( )

( )
1 ( ) ( )

m
uy

m

sC s G s
G s

C s G s
=

+
. Then, according to the 

small gain theorem [13], the closed-loop system is stable if 
                       ( ) ( ) 1.uyGγ γ δ <%                        (10) 

Considering the property of the stable scalar functions 
2

2
1( ) 1

Tses
sT

δ
−

∞
∞

−
= ≤  and assuming the worst case for 

the time delay (i.e. maxT T= ), we have 

max
max

1( ) 2 ( )
2uyT G
T

γ δ γ< → ≤% .        (11)                                             

Therefore, 

max

( ) ( ) 1( )
1 ( ) ( ) 2

m
uy

m

C j G jG j
C j G j T

ω ω ω
ω

ω ω
= ≤

+
.     (12)                                             

This completes the proof.                                                             o   

Remark 1: It should be noted that, there is a trade off 

between 
( ) ( )

1 ( ) ( )
m

m

C j G j
C j G j

ω ω ω
ω ω+

 and the transparency. That 

is, making this magnitude too small might compromise 

the transparency. This fact is also true in practical 
applications. That is, due to the existing delays in the 
communication channel and uncertainties in the 
environment dynamics, there is a compromise between 
stability and transparency [8]. 

4.2. Intrinsically Stability 
Since force tracking is performed by sending the force 

contact through the reflection path of the communication 
channel, one can define rF  as a new output in the block 
diagram of Fig. 2. Then, this block diagram can be 
simplified as the block diagram in Fig. 5, from which 
the transfer function of the overall closed-loop system 
can be written as  

    ( ) ( )
( )

1 ( ) ( )

sT
m

sT
m

r

h

C s G s e
M s

C s G s e
F
F

−

−= =
+

,         (13) 

where ms smT T T= +  and ( ) ( ) sT
r e

smF s F s e −= . 
Notice that, the tasks of ( )mC s  are to provide stability 

of the overall system and to ensure force tracking. From 
(13), it can be seen that there is a delay in the 
denominator of the closed-loop transfer function; hence, 
it is infinite dimensional. Moreover, it can destabilize 
the system by reducing the system stability margin and 
degrading its performance. As a result, one cannot use 
classical control methods to design a master controller 

mC  such that overall system in (13) is stable. Therefore, 
the time delay must be dealt with properly.  

The most popular and effective method to solve the 
delay problem for stable processes is the Smith predictor. 
This predictor can effectively cancel out time delays from 
the denominator of the transfer function of the closed-loop 
system. Fig. 6 shows block diagram of the Smith predictor. 
However, the main drawbacks of the Smith predictor are 1) 
the time delay must be constant and known a priori and 2) 
the model must be known precisely [14]. Hence, 
applications of the Smith predictor are limited in 
teleoperation systems. To overcome these limitations, it is 
necessary to find a mechanism to compensate for the 
mismatched model as well as uncertainties in the time 
delay. In order to compensate for the mismatched model, a 
second feedback loop is introduced in the closed-loop system 
(dashed line in Fig. 6). Furthermore, the time delay is be 
estimated adaptively. In this way, effects of the changes 
in the system will be completely compensated. Hence, 
proper inputs can be generated for the master controller.  

Fig. 7 shows structure of the master controller. 
According to this Figure, the closed-loop transfer 
function can be written as 

[ ]
( ) ( )

( )
1 ( ) ( ) ( ) ( )

T

T T

s
m

s s
m m

C s G s e
M s

C s G s C s G s e e

−

− −
=

+ + − %
, (14)  

where ( )G s is defined in (3). It is obvious that stability 
of the closed-loop system depends on the time delay. If 
the actual time delay T is equivalent to the estimated 
time delay T% , then the closed-loop system is stable.  
Equation (14) can be written as 
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( ) ( )
( )

1 ( ) ( )

Ts
m

m

C s G s e
M s

C s G s

−

=
+

                    (15) 

Fig. 8 shows block diagram of the equivalent closed-loop 
system for T T= % . However, due to estimation errors 
T T≠ % . Hence, the closed-loop system may be unstable. 
In the rest of this paper, the stability conditions will be 
discussed for the case of T T≠ % . Suppose, there exists 
estimation error for time delay and let T T δ= +%  denote 
the estimated time delay. The master controller mC  will 
be designed based on the estimated time delay. The 
closed-loop transfer function, given in (14), can be 
written as 

( ) ( )
( )

1 ( ) ( ) ( ) ( ) (1 )

sT
m

sT s
m m

C s G s e
M s

C s G s C s G s e eδ δ

−

− −=
+ + −

. (16) 

It is apparent that stability of the closed-loop system 
depends on the time delay. Now, the problem is to find 
the stability conditions such that the closed-loop system 
is stable. In other words, the roots of the characteristic 
equation lie in the left-hand side of the S plane. To do 
this, let show the no delayed version of ( )G s and 

( )mC s as 
( ) ( )

( ) , ( ) .
( ) ( )

g c
m

g c

N s N s
G s C s

D s D s
= =              (17)   

Then, the transfer function in (16) can be rewritten as 
( )( )

( ) ( ) (1 )

sT

sT s

N s eM s
D s N s e eδ δ

−

− −=
+ −

.        (18) 

where polynomials ( )D s and ( )N s are equal to 
( ) ( ) ( ) ( ) ( )g c g cD s N s N s D s D s= +          (19) 

( ) ( ) ( )g cN s N s N s= ,                      (20) 

in which ( ) ( )deg deg( ) ( )D s N s>  and 
polynomial ( )D s is Hurwitz. In the following theorem, the 
condition for stability of the closed-loop system without any 
upper bound for the time delay will be shown. That is, the 
time delay can be any limited value.  

Theorem 2: The closed-loop system in Fig. 7 is 
intrinsically stable, i.e. independent of the estimated time 
delay T% , if  

( ) 1
( ) 2s j

N s
D s ω

ω
=

< ∀ , 

where ( )D s  and ( )N s are given in (19) and (20), 
respectively, ( )D s  is Hurwitz, and 

( ) ( )deg deg( ) ( )D s N s> . 

Proof: For proof, the method of two-dimensional stability 
(2-D) test is used here [11]. In this testing method, the 
system must be stable for 0T =  (i.e. stable for no time 
delay). This is true for the closed-loop system in Fig. 7, 
since polynomial ( )D s  is Hurwitz. Now, using the 

characteristic equation of (18), the equations in 2-D test, 
which must be solved simultaneously, can be written as 

      ( ) ( ) ( )( )s D s N s z zδ∆ = + − % ,                 (21) 
                            ( , , ) 0s z zδ∆ =%                              (22)                  

1 1( , , ) ( , , ) 0s z z s z zδ δ
− −∆ = ∆ − =% % %            (23) 

where sTz e −=  and sTz e −= %% .  
Based on 2-D, when no solution for (22) and (23) exists; the 
closed-loop system given in (18) must be intrinsically stable. 
Using the characteristic, it yields                                              

( , , ) ( ) ( )( ) 0s z z D s N s z zδ∆ = + − =% % ,         (24) 
 and 

1 1

1 1

( , , ) ( , , )

( ) ( )( )
( ) ( )( ) 0.

s z z s z z

D s N s z z
z z D s N s z z

δ δ
− −

− −

∆ = ∆ −

= − + − −
= − + − − =

% % %
%

% %
  (25)                                                 

From (24) it yields 
( )
( )

D sz z
N s

= −% ,                            (26) 

Substituting (26) into (25) gives 
1 1

1
1

( , , ) ( , , )

( ) (27), ,
( )

( ) ( )( ) ( ) 0.
( ) ( )

s z z s z z

D szs z
N s

D s D sz z D s N s
N s N s

δ δ

δ

− −

−
−

+

∆ = ∆ −

  = ∆ −−     
   

= − − − =   
   

% % %

% %

% %

Hence, it implies that            
2( , , ) ( ) ( ) ( ) ( )

( ) ( ) 0.
s z z z N s D s zD s D s

N s D s
δ∆ = − − −

+ − =

% % % %
         (28)                               

From there, it yields 
2( ) ( ) 0

( ) ( )
N s N sz z
D s D s

−
− + =

−
% % ,                   (29) 

For s j ω=  and j Tz e ω−= %% , the roots of (29) must lie in the 

left-hand side of the S-plane. Substituting j Tz e ω−= %% and 
s j ω=  into (29) gives 

2( ) ( ) 0
( ) ( )

j T j TN j N je e
D j D j

ω ωω ω
ω ω

− − −
− + =

−
% % ,         (30) 

Factoring out j Te ω− % and noting that 0j Te ω− ≠
%  

( ) ( )1 0
( ) ( )

j T j T j TN j N je e e
D j D j

ω ω ωω ω
ω ω

− − −
− + = − 

% % % ,     (31)          

which gives 
( ) ( ) 1
( ) ( )

j T j TN j N je e
D j D j

ω ωω ω
ω ω

− −
+ =

−
% % ,         (32)                  

and in polar form 
( )

cos sin
( )

( ) 1.cos sin
( )

N j
T j T

D j
N j

T j T
D j

ω
ω ω

ω
ω

ω ω
ω

+ − 

−
= + −

% %

% %
      (33)                       

Noting that in polar form the magnitude is an even function 
while the phase is an odd function, it yields 
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( ) ( )

( ) ( )
2 cos 1N j N jT

D j D j
ω ωω
ω ω

 
+ ∠ = 

 
% .        (34)                                              

Hence, if the following condition is satisfied for all 
frequencies, then the characteristic equation of the closed-
loop transfer function in (18) will not have any roots with 
positive value for real parts, which yields a stable system 
independent of the value of T% : 

                         1( ) , .( ) 2
N j

D j
ω ωω < ∀                 (35)

                   o  
Remark 2: Based on remark 1, In order to increase the 
robustness of the overall system against uncertainties in the 
time delay, one can design the local controller such that Eq. 
(35) is always valid. However, it should be noted that there 
is a trade off between ( ) ( )N j D jω ω  and the precision 
of the transparency. The following theorem relaxes further 
this condition. In other words, transparency of the overall 
system can be improved without compromising stability of 
the system, if the time delay is communication channel is 
small enough.  

First, small time delay must be defined for teleoperation 
systems. Brooks [15] proposed a bandwidth between 4 and 
10 Hz for teleoperation systems. Consequently, by using the 
following first-order approximation for the time delay in 
Laplace transform 

1Tse sT− = −                            (36)                                       
and also noting that 

2 2( ) 1 11 ( )T j TT je ω ωω− = = + ≅− , we may select 
T=0.001 sec. Therefore, when it is referred to small time 
delay in communication channel, it means a time delay 
approximately equal to 0.001 sec. 

Proposition: The time delay in communication channel in 
teleoperation systems is considered small for T < 0.001 sec. 
This proposition is based on the suggested bandwidth 
between 4 and 10 by Brooks [15], and using the first order 
approximation of Tse −  as 1 sT− . 

Theorem 3: Let T Tδ = −% denote the estimation error for 
the time delay. Then, the proposed control system, shown in 
Fig. 6, is stable for small time delays if 

( ) 1
( ) s j

N s
D s ω

ω
=

< ∀ , 

where ( )D s  and ( )N s have are given in (19) and (20), 
respectively, ( )D s is Hurwitz, and  

( ) ( )deg deg( ) ( )D s N s> . 

Proof: Using the first-order approximation of Tse − and 
Tse − % as 

1 , 1 .T Ts se sT e sT− −= − = −% %              (37) 

And substituting these equations into the characteristic 
equation of the control system (16) yields 

( )

( ) 1 ( ) ( ) ( ) ( )( )

1 ( ) ( ) ( ) ( )(1 1 )

1 ( ) ( )[1 ( )]

1 ( ) ( ) .

T T

T T

s s
m m

m m

m
s

m

s C s G s C s G s e e

C s G s C s G s sT sT
C s G s s T T

C s G s e

δ
− −

− −

∆ = + + −

= + + − − +

= + − −

= +

%

%

%
% (38)                                               

Substituting ( ) ( ) ( )g gG s N s D s=  and 
( ) ( ) ( )m c cC s N s D s=  into (38) gives  

( )

( )

( ) 1 ( ) ( )

( ) ( ) .

T T

s T T

m
ss C s G s e

D s N s e
δ

− −

− −

∆ = +

= +

%

%
              (39)                                            

Using (38) and (39) and T Tδ = −% , Eq. (16) can be 
rewritten as 

( )( )( )
( ) ( )

s
s T

s

N s eM s e
D s N s e

δ
δ

δ δ

−
− −

−=
+

,           (40)                    

Since ( )s Te δ− −  doesn't play any role in stability of the closed-
loop system, according to the Tsypkin theorem [16], the 
condition for closed-loop stability is  

( ) 1, .( ) s j

N s
D s

ω
ω

=
< ∀               (41) 

 
o  

Remark 3: It should be noted that the condition given in 
(41) for small time delays doesn’t have any conflict with the 
results of theorem 2, given in (35). In other words, if 
condition (35) is satisfied, then (41) is guaranteed as well. 
This is because in the proof of theorem 3, the time delay was 
assumed to be small, which imposes more restriction on the 
time delay but less restriction on the design of the local 
controllers.  
 
5. Simulations 
In order to evaluate the effectiveness of the proposed control 
method, the controller has been applied to the following 
example, which has been used in literatures [12]. In this 
example, the dynamics of the master and slave systems are 
described as a 1-DOF mass-damper system by 

2( )m m m m hM s B s x F F+ = + ,  
2( )s s s s eM s B s x F F+ = −  

where B  is the viscose friction coefficient, M is the 
manipulators inertia, x  is the position and F  is the input 
force; indices m  and s  are for the master and the slave 
systems, respectively; hF  is the force applied to the master 
by human operator and eF  is the force exerted on the slave 
from the environment. The system parameters are set to 

mM = 0.4 kg and mB = 3 N/m for the master, sM = 1 kg and 
sB = 0.2 N/m for the slave, and eZ =1 for the environment 

impedance. In simulations, two different conventional 
controllers are designed. The first one is a PD controller, 
called the remote controller, which is used for the slave 
controller sC . The second controller is a PD controller, 
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called the local controller, which is used for the master 
controller mC .  

The remote controller is designed such that ˆ ( )G s  in (2) is 
stable and the local controller is designed such that the 
behavior of the closed-loop teleoperation system is 
acceptable (i.e. stability of the overall closed-loop and force 
tracking is guaranteed). Furthermore, using these 
controllers, the stability conditions of the closed-loop system 
in (7), (35) and (41) must hold. These conditions can be 
checked graphically with Bode plots as well.  
In order to demonstrate performance of the proposed 
method against time delays with perturbations, simulations 
are performed for two general cases: 1) possibly stability 
(Section 4.1) and 2) intrinsically stability (Section 4.2). In 
addition, two different inputs are used in simulations; step 
input and sinusoidal input. 

5.1. Possibly Stability 
Table 1 presents the type of controllers and their typical 
coefficients for possibly stability. Notice that, these values 
are not unique and are selected only to satisfy the stability 
condition given in Section 4.1. The simulation results are 
shown in Figs. 9-12. These figures are the time delay, the 
Bode plot for presenting the stability condition (7), and 
transparency response for the step and sinusoidal inputs, 
respectively. As these figures show, the proposed structure 
exhibits good performance. The dashed line in Fig. 10 
represents the right hand side of Eq. (7), which must be 
preserved in the control design. 

 5.2. Intrinsically Stability 
Simulations for the intrinsically stability case are carried out 
for different values of time delay. In case I, the time delay is 
small with some perturbations. In case II, the time delay is 
relatively large with considerable perturbations. In these 
cases, normally distributed random signals are used as 
perturbed time delay. Moreover, the time delay is estimated 
with an FIR filter [17]. Order of the FIR filter has been 
chosen as 6P = , because for 6P ≥  the estimation error of 
the time delay will be very small and negligible [17]. Tables 
2 and 3 show the type of controllers and their typical 
coefficients used in simulations. Notice that, these values are 
not unique and have been selected only to satisfy the 
stability conditions given in (35) and (41) for large and 
small time delays, respectively. 
Figs. 13 and 17 show the time delays in communication 
channel for cases I and II. The stability conditions can be 
checked using the Bode plot given in Figs 14 and 18. The 
dashed lines in Figs. 14 and 18 represent the right hand side 
of (41) and (35), which are 20log(1)= 0 db  and 
20log(0.5) 6 db≅ − , respectively. Figs. 15 and 16 show the 
step and sinusoidal response of the teleoperation system for 
the small time delays, while Figs. 19 and 20 show the same 
responses for the large time delays. 
Fig. 21 presents an unstable teleoperation system for small 
and perturbed time delay, when the stability condition in 
(41) does not hold. 

6. Conclusions 
A simple control method for teleoperation systems was 
proposed in this paper. The proposed method provides 
transparency and stability with robustness against 
uncertainties in the time delay in communication channel. 
Two local controllers, one for the master side and the other 
one for the slave side, was design. The slave controller 
guarantees the position tracking while the master controller 
guarantees the force tracking as well as stability of the 
closed-loop system. The major advantage of the proposed 
method is that one can use the classical control methods to 
design local controllers. Furthermore, stability of the 
teleoperation systems can be checked graphically with the 
Bode plot method. Therefore, the controller design would be 
simple and straightforward. In simulations, by using two PD 
controllers, for a 1-DOF telemanipulation system, it was 
shown that the proposed method is a viable selection for 
teleoperation systems with perturbed time delay in 
communication channel. Future works in this area will 
include mismatch model in the teleoperation systems and 
conditions for stability of such a case. 
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Fig. 3 Equivalent control structure for Fig. 2 
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Fig. 4 The equivalent structure of ˆ ( )M s in Fig. 3 
 

 
 

    
 

 

Fig. 5 New control scheme (the third form) 

 

 

 

      

 

Fig. 6 The Smith predictor control method 
 

 
 
 
 

 

 
 

                    Fig. 7 Structure of the master controller                                                              
 

 
 
 
 

 

Fig. 8 The desired control-loop configuration 
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                          Fig. 9 Time delay in communication channel    
 

 
 
 

 
 

    
 
 
 
 
 
 
 
 
             Fig. 10 Bode plot for presenting stability condition (7) 
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Fig. 11 Transparency response for step input. 
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Fig. 12 Transparency response for sinusoidal input 
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Fig. 13 Time delay in communication channel (case I) 

 

 
 
 

  
 
 
     
 
 
 
 

 
 
 
 

Fig. 14 Bode plot for presenting stability condition (41) (case I) 
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Fig. 15 Transparency response for step input (case I) 

      
0 5 10 15 20

-0.5

0

0.5

Time (Sec)

Po
si

tio
n 

Tr
ac

ki
ng

Master
Slave

      
 

 
0 5 10 15 20-1.5

-1

-0.5

0

0.5

1

1.5

Time (Sec)

Fo
rc

e 
Tr

ac
ki

ng

Human Force
Force Reflection

 
 

Fig. 16 Transparency response for sinusoidal input (case I). 
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Fig. 17 Time delay in communication channel (case II) 
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Fig. 18 Bode plot for presenting stability condition (35), (case II) 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 19 Transparency response for step input (case II).  
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 19 Transparency response for step input (case II).  
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Fig. 20 Transparency response for sinusoidal input (case II) 
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Fig. 21 Unstable teleoperation system for small time delay in 
communication channel when stability condition in (41) does not hold, (a)  

Bode plot, (b) the step response. 
 

Table 1   The type of controllers and their parameters for possibly stability 
 

Controller Type PK  DK  

Local (Master) PD 0.75 0.15 
Remote (Slave) PD 20 34.8 

 
 

Table 2   Type of local (Master) controllers 

Case Local Controller PK  DK  

Case I PD 0.1 0.5 
Case II PD 0.65 0.85 

 
 

Table 3   Type of remote (Slave) controllers 

Case Remote Controller PK  DK  

Case I PD 20 34.8 
Case II PD 20 34.8 
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