
 

 

 

 

 

 

 

 

 

 

 
1.  Introduction 
Sliding-mode observers are known to be robust against presence of disturbances and modeling uncertainties 

[1−3]. Although these observers are highly robust with respect to noises in system inputs, it turned out that the 

corresponding stability degrades in systems that exhibit output noise or mixed uncertainties [4]. When the 

measurements are noisy, because the time derivatives cannot be accurately calculated, it can lead to poor closed-

loop performance or instabilities in the estimation procedure. 

Sliding-mode observers are known as high-gain observers, which have appropriate behavior in disturbance 

rejection [5−7]. Vasiljevic and Khalil have shown that a high-gain observer acts as a differentiator in the limit as 

the gain approaches infinity [8]. Hence, in the presence of the measurement noise, it magnifies the noise in the 

estimated states. Therefore, there is a trade-off between the observer gain and the noise effect in the state 

estimation. In addition, they have showed that a bound on the estimation error exists that depends on the 

maximum amplitude of the measurement noise. Recently, Ahrens and Khalil have introduced a high-gain 

observer, where the gain matrix switches between two values [9]. In this method, when the estimation error 

reaches a steady-state threshold, it switches to a second gain to reduce the effect of the measurement noise. The 

idea of gain switching in observers has been employed before by other researchers for noise cancellation in the 

state estimation [10]. 

 Since the main source of the sliding phenomena is the relay element, researchers use relay feedback systems 

to analyze sliding properties [11]. Due to the interesting characteristics of relay feedback systems, research in 

this area is fast developing. A number of analyzing methods for the modeling of relay feedback systems as well 
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as methods for estimating the switching frequencies and the amplitude of oscillations are discussed in [12, 13]. It 

is well known that when the relay feedback system is operating in the switching mode, it may have finite or 

infinite switching frequencies, which are called the limit cycle and the ideal sliding mode, respectively.  

 For the first time, Boiko and Fridman applied the relay feedback concept to the design of linear observers, 

where they have used the relay equivalent gain technique [14, 15]. In continuation of their works, a novel 

approach for the observer design for nonlinear systems in presence of the measurement noise is presented in this 

paper. The proposed method takes advantage of the high-gain observers in order to enforce the estimated states 

to move quickly to the system states. Therefore, in the first step, the conditions for forcing the observer to go to 

the switching zone are satisfied. Next, when the observer is operating in the switching or the sliding condition, 

the signals are decomposed into two parts: the slow-mode part and the fast-mode part. For every mode, the 

corresponding design for the appropriate operation of the observer will be considered. It will be shown that the 

amplitude and frequency of oscillations have direct effects on the dynamics and stability of the fast and slow-

modes of the states estimation when the observer is operating in the switching condition. Moreover, in order to 

make the proposed observer robust against the measurement noise, first the performance of the observer in 

presence of the measurement noise is analyzed. Next, the effect of the measurement noise in states estimation 

will be considerably reduced by introducing a Variable Relay-Equivalent Gain (VREG) technique. The main 

features of this paper can be summarized as follows:  

• Frequency regulation of the sliding-mode observer without any need for linearization  

• Presenting a relationship between the switching frequency and stability and the performance of sliding-

mode observers  

• Providing high gain property in the switching mode for sliding-mode observers and consequently obtaining 

fast convergence of the estimated states to the actual states 

• Proposing a variable gain technique in order to have less sensitivity to the measurement noise in sliding-

mode observers.  

Simulation results show good performance of the proposed method as compared to the conventional sliding-

mode observers in a bioreactor application. 

This paper is organized as follows. Section 2 gives the problem statement, preliminary definitions, and 

assumptions. Section 3 provides the design procedure of the proposed method. Section 4 presents measurement 

noise analysis. Section 5 shows illustrative example followed by conclusions in Section 6. 

 

Notations: Throughout this paper, ( )maxλ A denotes the maximum eigenvalue of matrix A and A denotes the 2-

norm of it. 

 

2.  Problem statement 
Consider the following class of systems:  

( ) ( ), ,u u
y

λ= + +

=

x Ax f x E x
Cx

&
                                                               (1) 

where n∈ℜx  is the vector of unknown state variables, mu ∈ℜ  is the input signal, y ∈ℜ  is the measured 

output, : n nℜ × ℜ → ℜf  is a nonlinear smooth function, 1n×∈ ℜE  and  : n mλ ℜ × ℜ → ℜ   is the modeling  

uncertainties and disturbances, respectively.  



Assumption 1: An estimation gain L can be designed such that (A–LC) is stable. 

 

Assumption 2: The uncertainty function λ   is assumed to be bounded; that is, ( ),uλ λ≤x , where λ  is the 

upper bound. 

 

Assumption 3: The nonlinear function ( , )uf x  is Lipschitz with respect to x  and uniformly for u ∈A , where 

A  is an admissible control set. That is, there exists a constant 0γ >  such that 

( ) ( )ˆ ˆ, ,u u γ− ≤ −f x f x x x                                                               (2) 

 

The following observer is proposed for system (1): 

( ) ( ) ( )ˆ ˆ ˆ ˆ,
G :

ˆ ˆOBS
u y y us

y

 = + + − += 
=

x Ax f x L Ε
Cx

&
                                                 (3) 

where x̂  denotes the estimated state vector, L  is the observer matrix, and u is a discontinuous signal with the 

following form: 

( )( )sgn yu d tσ= ,                                                                    (4) 

in which 0d ≥  is the relay gain and 
( ) ( ) ( )y t y t y tσ = −                                                                   (5) 

                      

 ( ) ( ) ( )ˆY j Y j H jΩ = Ω Ω ,                                                             (6) 

where ( )Y j Ω  and ( )Ŷ j Ω  are the Laplace transform of signals ( )y t  and ( )ŷ t , respectively. Assume that 

( )H j Ω  is designed such that in the frequency domain 

( ) ( )
1 for 

for 
b

b

H j
j

Ω ≤ Ω
Ω ≈ Φ Ω Ω >Ω

                                                        (7) 

where bΩ  is defined as the bandwidth frequency of the slow-mode of the observer in the switching mode, 

( )jΦ Ω  will be designed later on.  

Defining the state estimation error as ˆ:= −σ x x , the error dynamics becomes 

  
( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )
ˆ ˆ, , ,

ˆ, , ,

y y u u u u

u u u u

λ

λ

= − − + − + −

= − − + −

σ Aσ L f x f x E x E

A LC σ + f x f x E x E

&
                                        (8) 

The proposed observer is designed for two different states: the transient state and the switching state. In the 

transient state, the observer is a high-gain observer. That is, the high gain of the relay (d) guarantees fast 

convergence of the estimation errors to zero and forcing the observer to enter the switching region. Moreover, 

the high gain can provide better disturbance rejection. It should be noted that, before the switching state (i.e. 

when the estimation error is large) the amplitude of the measurement noise is negligible as compared to the 

amplitude of the estimation error. Hence, the noise reduction does not play an important role when the estimation 

error is large. In the switching state, however, a novel approach will be proposed where the signals are 

decomposed into the slow and fast modes, each mode requiring a different design. In other words, the amplitude 



and frequency of oscillations are defined such that the slow-mode of the observer in the switching mode behaves 

like a high gain observers. This provides very quick convergence of the slow-mode estimation error to zero. 

Moreover, by regulating the switching frequency, oscillations can simply be removed from the estimated states 

using a low-pass filter. In addition, a Variable Relay-Equivalent Gain (VREG) technique will be proposed to 

diminish noise effects on the estimated states. Hence, the objective is to design d, ( )H s , and L to achieve these 

goals. 

 

Definition 1: Due to the presence of the discontinuity in the relay, signals in the switching mode can be 

decomposed into two parts: 1) the fast-mode part associated with the periodical motion across the switching 

surface and 2) the slow-mode part associated with the motion along the switching surface. Let define bΩ ≤ Ω  as 

the low frequency domain and  bΩ >Ω  as the high frequency domain. Therefore, every signal in the system and 

in the observer can be decomposed into two parts: 1) the slow-mode part and 2) the fast-mode part; i.e. 

0 s= +x x x , ( ) ( ) ( )0y y yst t tσ σ σ= + , 0 s= +σ σ σ , 0 sy y y= + , 0ˆ ˆ ˆ sy y y= + , 0 sy y y= + , where subscripts 

“0” and “s” indicate the slow and fast modes of the corresponding signal, respectively. This separating idea has 

been used before for linear systems by some researches such as [16] and [17]. 

 
Remark 1: As it will be considered later, since the frequency of the fast-mode can be designed high enough and 

far from the bandwidth of the slow-mode of the observer bΩ , then by passing signals through a low-pass filter 

with a bandwidth greater than bΩ but smaller than the switching frequency sΩ , which is high enough, the high 

frequency mode can be removed from the estimated states. This idea was proposed before by other researchers 

such as [18]. Hence, the main system just observes the slow-mode of the estimated state variables, which has 

frequency in the domain of bΩ ≤Ω  . Without loss of generality, let assume that the main part of the system 

signals, which are going to be estimated, are in the frequency domain of bΩ ≤Ω . In addition, the remaining part 

of the system signals, which is assumed to be in the domain of  bΩ >Ω  (e.g. measurement noises) is not 

important as compared to the high frequency mode of the observer and hence, can be ignored. Therefore, the 

high frequency parts of the main system signals, i.e. ( )sy t and ( )s tx , can be eliminated. In other words, it can 

be assumed that 0s =x  and ( ) 0sy t = . 

 
Proposition 1: Signal ( )y t  in the slow and fast-modes can be written as 

( )
( )

( ) ( )
0

ˆ for

ˆ for

b
t

b

y t
y t

y t dτ ϕ τ τ

 Ω ≤ Ω= 
− Ω > Ω∫                                                   

(9) 

respectively, where ( )tϕ is the inverse Laplace transform of ( )sΦ presented in (7).  Moreover,  

( ) ( )00y t tσ = Cσ                                                                      (10) 

 
( ) ( ) ( )( )0

ˆ
t

ys st t t dσ ϕ τ τ= − −∫C x                                                       (11) 

proof: Using (6) and (7), ( )y t  can be written as 

( )y t = ( ) ( ){ }1 Ŷ j H j− Ω ΩL                                                        (12) 



where {}1− ⋅L  indicates the inverse Laplace transform operator. The slow and fast modes of this signal are 

( ) ( ) ( ){ }
( ) ( ){ }

( ) ( ) ( )

1
0

1

0 00

ˆ

ˆ

ˆ ˆ ,

b

bb

t

y t Y j H j

Y j H j

y t d y tτ δ τ τ

−

−

Ω ≤ Ω

Ω ≤ ΩΩ ≤ Ω

= Ω Ω

Ω Ω

= − =

=

∫

L

L                                                   (13) 
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−

−
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= Ω Ω

Ω Ω

= −

=

∫

L

L                                                        (14) 

Hence, the errors between the estimated and actual outputs in the slow and fast-modes are 

  ( ) ( ) ( ) ( ) ( )( ) ( )0 0 0 0 00
ˆ ,y t y t y t t t tσ = − = − =C x x Cσ                                         (15) 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )( )

0

0

ˆ

ˆ .

t

ys s s s s

t

s s

t y t y t t y t t d

t t d

σ ϕ τ τ

τ ϕ τ τ

= − = − −

= − −

∫

∫

Cx

C x x
                                      (16) 

Then, according to Remark 1, using a low-pass filter, ( )ys tσ  becomes  

( ) ( ) ( )( )0
ˆ

t

ys st t dσ τ ϕ τ τ= − −∫C x .                                                     (17) 

The Laplace transform of (17) is 

( ) ( ) ( ) ( ) ( )ˆ
ys s ss s s s sΣ = − Φ = ΦCΧ CΣ ,                                                (18) 

where { }( ) ( ) ,ys yss tσΣ = L { }ˆ ˆ( ) ( )s ss t=Χ xL  and { }( ) ( )s ss t= σΣ L .                                                          □ 

 

Remark 2: Decomposition of signals into the slow and fast modes is just needed in the switching state and in the 

normal operation (i.e. before the switching conditions occur) where signals operate in the frequency domain 

bΩ ≤Ω . Hence, using (5) and Proposition 1, before the system enters into the switching state  

( ) ( )y t tσ = Cσ .                                                                     (19) 

In the next section, the observer design for these two states (i.e. the transient state and the switching state) will be 

given. 

 
 
3.  Observer Design 
In this section, the observer design will be presented for two different states. First, in the transient state, 

conditions for forcing the estimated state variables to move quickly to the switching state will be defined. Due to 

the high amplitude of the relay gain d, this mode acts as a high-gain observer. Next, in the switching state, 

parameters will be designed such that a fast transient is obtained for the slow-mode and a simple high-frequency 

rejection is provided for the fast-mode. 

 

 



3.1. Transient state 

In this subsection, it will be shown that proper selection of the relay parameter (d) guarantees convergence of the 

error dynamics to the sliding surface in finite time and that the switching condition occurs. 

Let define 0yσ =  as the sliding surface. It is well known that the sliding surface and its derivative must satisfy 

0y yσ σ= =&  in the switching mode. The condition for existence of a switching mode is [19]: 

00 0 andy y y t tσ σ σ< ∀ ≠ ∀ ≥& .                                                      (20) 

Then, it is said that the surface 0yσ =  is an attracting surface and the switching condition occurs. 

 
Assumption 4:  Assume that the positive definite matrix 1 1

T=P P  and matrix L  satisfy the following equation: 

1 1 1( ) ( )T T− + − = −A LC P P A LC Q ,                                                      (21) 

where A is Hurwitz and 1Q  is positive definite. 
 
Assumption 5: Assume that 0T >σ Nσ , where 1=N P EC  . 

Lemma 1: Consider Assumptions 1--5, Remark 1, and the error dynamics (8) and (19). Selecting the sliding 

parameter d as 

1d d≥                                                                              (22) 

 where  

          ( )( ) ( )1 min 1 1 1 1d λ γ λ= − + +Q P σ 0 E P E P  

and ( )σ 0  is ( )tσ  at 0t t= ,  guarantees  that  ( )lim 0t t→∞ =σ . In addition, the sliding surface will reach the sliding 

manifold 0yσ =  in finite time and the switching mode will occur. 

Proof: Let define the following Lyapunov function: 

1 1
1 .
2

TV P= σ σ
  

                                                                      (23)
 

The time derivative of this function is 

( ) ( ) ( )( )

( )

1 1 1 1

2 2
min 1 1 1 1

ˆf , f , ,

.

T T T

T

V u u u u

d

λ

λ γ λ

= + − − −

≤ − + + −

σ Q σ σ P x x E x σ P E

CσQ σ P σ E P σ σ P E
Cσ

&

                                (24) 

Considering Assumption 5 and the fact that Cσ is a scalar, it gives 

( )( ) 2 1
1 min 1 1 1 ,

T

V dλ γ λ≤ − + + −
σσ P E

Q P σ E P σ C
C σ

&                                   (25) 

Hence, 1V&  becomes negative if 

( )( ) 3 21
min 1 1 1

T

d λ γ λ≥ − + +
σσ P E

C Q P σ E P σ
C

,                                      (26) 

or equivalently 



( )( )( )

( )( )( )

( )( )

3 2
min 1 1 1

1

3 2
min 1 1 1

1

min 1 1 1

1

.

T

T

d
λ γ λ

λ γ λ

λ γ λ

− + +
≥

− + +
≥

− + +
≥

Q P σ E P σ C

Cσσ P E

Q P σ E P σ C

C σσ E P

Q P σ E P
E P

                                             (27) 

Now,  let define 

( )( ) ( )1 min 1 1 1 1d λ γ λ= − + +Q P σ 0 E P E P . 

Hence, selecting 1d d≥  guarantees  1 0V <& . Consequently, ( ) 0t =σ  can be reached in finite time. 

Next, to show that the switching condition occurs, let define 2
2

1
2 yV σ= . According to (19), the time derivative 

of 2V  is 

( ) ( ) ( ) ( )( )
( )
( )

2

ˆf , f , ,
y y

y

y y

y

V

u u u u

d

d

σ σ

σ λ

σ γ λ σ

σ γ λ

=

 = − − + − 
 ≤ − + + − 
 = − + + − 

C A LC σ+ x x E x E

C σ A LC C E CE

C σ A LC C E CE

& &

                                        

(28) 

Since it was shown that 0→σ and 1d d≥ , it can be readily seen that the last bracket of (28) becomes negative 

and consequently 2 0V ≤& . Therefore, condition (22) ensures that the sliding surface 0yσ =  can be reached in 

finite time and the switching condition occurs.                                                                                                        □ 

 

3.2.  Switching state 

It is well known that the describing function (DF) of relay elements in the switching state can be obtained based 

on its input amplitude and its d parameter [20]. Next, the DF for the relay element will be defined. 

 

3.2.1  Relay model in the switching state 

The relay element was defined in (4), where d is the relay gain and yσ is the input defined in (5). As it will be 

shown latter, the fast-mode dynamics of the observer is a linear system. The oscillating and high frequency part 

of ( )y tσ can be presented as [20] 

( ) ( )sinys st a tσ = Ω ,                                                                   (29) 

where a  and sΩ  are the amplitude and frequency of the limit cycle (or oscillations), respectively. Using the 

Fourier transform, ( )u t  can be presented as [20] 

( ) ( ) ( ) ( )0 1sin sin 2 ,n y s s s su t K t K a t K a tσ= + Ω + Ω + L                                  (30) 

where nK , sK , 1sK , … can be determined using the Fourier transform. Hence, ( )u t can be written as    

( ) ( ) ( ) ( )0n y s ysu t K t K t N εσ σ= + + ⋅ ,                                                    (31) 



where ( )N ε ⋅  is the modeling error. Since sΩ  is selected high enough in the design procedure and because most 

systems in engineering applications act as low pass filters and in view of the fact that ( )N ε ⋅ contains signals with 

frequencies larger than sΩ , the effect of ( )N ε ⋅  in the estimated states can be ignored without any loss of 

generality. Nevertheless, it will be considered in analysis.  

 
Assumption 6: ( )N ε ⋅  is unknown but bounded and its norm can be presented as 

1 0 2( ) mN ε β β σ⋅ < +σ ,                                                             (32) 

where 1β
 
and 2β  are positive constants and m ysaσ σ≥ ≥ .  

 

Using (10), (31) can be written as 

( ) ( ) ( ) ( )0n s ysu t K t K t N εσ= + + ⋅Cσ ,                                                (33) 

where nK  and sK  can be computed as [11, 20]  

0

0

0

2
n

y u

u dK
aσ π

=

∂
= =

∂
,                                                                (34) 

4
s

dK
aπ

= .                                                                          (35) 

Hence, the relay element passes the slow-mode of signals with the gain nK  and the fast-mode of signals with 

the gain sK ; i.e. 

( ) ( )s s ysu t K tσ= ,                                                                    (36) 

( ) ( )0 0nu t K t= Cσ .                                                                   (37) 

 

3.2.2    Observer structure in switching state 

In order to derive the main results, first by considering two modes of signals in the switching state, let rewrite (8) 

as  

( ) ( ) ( )0 0 0 0 0ˆ ˆ, , , ,s s s s su u u u+ = + + − + + + −σ σ Aσ + Aσ f x x f x x λ x x E& &                          (38) 

  

 
Figure 1. Block diagram of proposed observer. 
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where = −A A LC . Note that based on Remark 1, the main system signals with high frequency modes (i.e. sx ) 

can be eliminated from (38). Next, in the observer structure, the high frequency mode of estimated signals ( ˆ sx ) 

is filtered if it is just used as states of a nonlinear function such as ( )⋅f . This task changes the high frequency 

mode of the proposed observer into a linear system and consequently properties of the high frequency mode of 

the observer (such as the frequency and the relay equivalent gain), will obey linear relay feedback systems. 

Figure 1 presents the block diagram of the proposed observer, in which LPF denotes a linear Low Pass Filter, 

designed based on Remark 1. 

 

Hence, (38) can be written as 

( ) ( ) ( )0 0 0 0 0ˆ, , , .s s u u u uλ+ = + − + −σ σ Aσ + Aσ f x f x E x E& &                                  (39) 

Then, using (33) 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0ˆ, , , .s s n s ysu u u K t K t N ελ σ+ = + − + − − − ⋅σ σ Aσ + Aσ f x f x E x ECσ E E& &            (40) 

Consequently, the estimation error dynamics of the observer can be decomposed into the fast and slow modes, 

respectively, as 

( ) ( )G :FO s s s ysK tσ= − −σ A LC σ E& ,                                                      (41) 

( ) ( ) ( ) ( ) ( )0 0 0 0 0ˆG : , , , ,SO nK u u u N ελ= − − + − + − ⋅σ A EC LC σ f x f x E x E&                            (42) 

where sσ&  and 0σ&  are the observer error dynamics associated with the slow and fast modes, respectively. These 

two dynamics need to be designed for different modes. For the slow mode, nK  must be defined such that 0σ  

becomes very small as t → ∞ . On the other hand, in the fast-mode, ( )H j Ω  and L must be designed to provide 

proper values for nK  and in addition, the oscillation frequency becomes large enough. Moreover, to determine 

the relay equivalent gains nK and sK  (as it will be shown in Theorem 3) there is a tradeoff between better state 

estimation and less sensitivity to the measurement noise. 

 

3.2.2.1. Slow-mode dynamics of observer in switching state 

 Lemma 1 guarantees convergence of the error dynamics to the sliding surface, which in turn ensures occurrence 

of the switching state. Then, in the switching state, as it was shown in (41) and (42), the observer structure 

consists of two parts. In this section, nK  is designed such that the slow-mode of the estimation error, i.e. 0σ , 

has small amplitude. 

Assumption 7: Let 2 2
T=P P  be a positive-definite matrix and also L , E and nK be such that 

( ) ( )2 2 2
T T

n nK K− − + − − = −A EC LC P P A EC LC Q                                       (43) 

where A  is the same as before and 2Q  is a positive-definite matrix.  

Theorem 1: Consider the slow-mode of the observation error (42) and Assumptions 1--7. Then, the error 

dynamics for the slow mode ( 0σ ) is uniformly ultimately bounded. Moreover, this bound can be made small 

enough. 

Proof: Consider the following Lyapunov function: 



3 0 1 0
1
2

TV = σ P σ                                                                        (44) 

where 1P  is the same as defined in Assumption 4. The time derivative of (44) is 

         

( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( )

3 0 1 0 0 1 0 0 0 0 1 0 0 1

2 2 2
min 1 0 1 0 1 0 min 0 0 1

ˆ, , ,

,

T T T T
n

n

V u u u K N

K N

ε

ε

λ

λ γ λ λ

= − + − + − − ⋅

≤ − + + − + ⋅

σ Q σ σ P f x f x E x σ P ECσ σ P E

Q σ P σ P E σ N σ σ P E

&

                 
(45)

 
where matrix N  was defined in Assumption 5. Using Assumption 6 and Young’s inequality 

( ) ( )

( ) ( )

( ) ( )

0 1 1 0 max 1 1 0 2

2
1 0 max 1 0 2 max 1

22
0 1 max 1 2 max 1

1 1 .
2 2

m

m

m

N ε λ λ β β σ λ

β λ β σ λ λ

β λ β σ λ λ

   ⋅ + ≤ + +  

 ≤ + + 
   ≤ + + +    

σ P E P E σ P σ E E E

E σ P σ E P E

σ E P E P E

                (46) 

Using (46), (45) becomes 
2

3 1 0 2V c c≤ − +σ&

                                                                   

(47) 

where ( ) ( ) ( )1 min 1 min 1 1 max 1
1
2nc Kλ λ γ β λ= + − − −Q N P E P  and ( ) 2

2 2 max 1
1
2 mc β σ λ λ = + E P E . 

Therefore, if nK  designed such that the following inequality holds:  

( ) ( ) ( )min 1 min 1 1 max 1
1 ,
2nKλ λ γ β λ+ ≥ + +Q N P E P

                                           (48) 

and defining the following compact set around the origin: 

{ }2
0 1 0 2: ,c cΨ = ≤σ σ

                                                                (49) 

it can be concluded that 3 0V ≤&
 when the error is outside of the compact set Ψ . Hence, according to the 

extension of the standard Lyapunov theorem [21], the error trajectory 0σ  is ultimately bounded. Moreover, this 

bound can be made small using large values for 1c . This can be accomplished by designing appropriate values 

for the observer parameters such as nK  and  L.                                                                                                       □ 

 

Remark 3: According to (49), by enlarging the equivalent relay gain nK and consequently 1c , the compact set 

Ψ  becomes small. I.e., if nK  becomes large enough, then the radius of the compact set becomes negligible or 

0 0→σ . 

As it is clear from Theorem 1, in addition to vector L, nK also affects the dynamics of the slow-mode in the 

switching condition. In the next sections, it will be shown that nK  is a function of the amplitude and frequency 

of oscillations. Hence, nK can be controlled by parameters of the fast-mode dynamics of the observer. 

 

3.2.2.2. Fast-mode dynamics of observer in switching state 

In Theorem 1, it was shown that the slow-mode of the observation error dynamics can become very small by the 

appropriate design of matrix L and especially the gain of the slow mode ( nK ). In the followings, the fast-mode 

of the observer in switching conditions is analyzed.  



From (41) it can be shown that 

 
Figure 2. Fast-mode dynamics of observer 

 

( ) ( )
G s s s

FO
FO s

u
σ

 = − + −≡ 
=

σ A LC σ E
Cσ

&
                                                          (50) 

where FOσ  is the output of the fast-mode dynamics of the observer and su− , as shown in (36), is the input to the 

fast-mode observer as well as the output of the relay element. Hence, GFO

 
can be represented as 

( ) { }
{ }

( )
( )

( )
( )

s s
FO

s s

t s
G s

u t U s
= = −

−
Cσ CΣL

L
,                                                       (51) 

where ( )sU s = L  { }( )su t  and ( )s s =Σ  L   { }( )s tσ .
 

The next proposition demonstrates the relationship between the input and output signals of the relay element in 

the fast-mode in the frequency domain. 

 

Proposition 2: Consider (18), (36) and (50). The relationship between the input and output of the relay element 

in the fast-mode is  

{ }
{ }

( )
( ) ( ) ( )

( )
( )

ys ys
FO

s s

t s
G s H s

u t U s
σ

= = −
ΣL

L    
                                                   (52) 

where su  and ysσ  are the input and output of the relay element in the fast-mode operation, respectively.  

Proof: From (36) we have ( ) ( )}{ yss sU s K tσ= L . Considering (18) and (51), it gives   

( ) ( ) ( ) ( ) ( ) ( )ys s s FOs s s U s G s s= Φ =− ΦΣ CΣ .                                               (53) 

Hence, considering (7) 

( )
( ) ( ) ( )ys

FO
s

s
G s H s

U s
= −

Σ
,                                                                (54) 

where ( ) ( )ys ss U sΣ  is equal to the inverse of the transfer function of the relay element in the fast-mode 

operation, i.e.1 sK . Therefore, 

( ) ( )1
FO s s

s

G j H j
K

= Ω Ω .                                                            (55) 

This completes the proof.                               □ 

Figure 2 presents the fast-mode dynamics of the observer. On the other hand, using (34), (35) and (55), it gives 

( ) ( )
1

2n
FO s s

K
G j H j

=
Ω Ω

                                                          
 (56) 

( )FOG ssK su ( )H s syFOσ

1−

ysσ



As it was shown in this section, the relay equivalent gain in the fast and slow modes can be regulated by the 

appropriate structure design of linear systems G ( )FO s and ( )H s and also by the frequency of oscillations sΩ . In 

other words, the larger ( ) ( )s sFO j jG HΩ Ω , the smaller nK  and sK . Based on Theorem 1, these parameters 

directly affect the stability and the estimation error of the observer. 

Equations (34), (35), (55) and (56) help the designer to determine ,nK sK and the frequency and amplitude of 

oscillations, which will be considered in the following section. 

 

Parameters Design 

According to Proposition 2 and from the theory of self-oscillating adaptive systems, based on relay feedback 

systems, ( )H s can be designed such that the frequency of the oscillations (or the limit cycle) ,sΩ  with the 

following property [20]: 

( ) ( ) 0180FO s sG j H j∠ Ω + ∠ Ω = − ,                                                      (57) 

can be controlled as desired. Moreover, the amplitude of oscillations in the fast-mode operation can be derived 

using (35) and (55) as 

( ) ( )4
FO s s

da G j H j
π

= Ω Ω .                                                           (58) 

Since the amplitude of ( )FOG j Ω  is a decreasing function with respect to the frequency, larger selections of 

sΩ  lead to smaller values for ( )FOG j Ω  and larger values for nK and sK . Therefore, making the switching 

frequency large enough and far enough from the bandwidth of the slow-mode of the observer has two benefits: 

1) The oscillating mode of signals can be easily removed using a low-pass filter and 2) According to Theorem 1 

and (56), in the switching state, the relay equivalent gain becomes large. Hence, the observer acts as a high gain 

observers, which provides faster transient times and better disturbance rejections. This property moves the 

observer closer to the ideal sliding-mode condition, where the switching frequency grows to infinite. The 

following theorem shows conditions for the ideal sliding mode. 

 

Theorem 2. If the transfer function Wl (s) is a quotient of two polynomials Bm (s) and An (s) of degrees m and n, 

respectively, with non-negative coefficients, then for the existence of the ideal sliding mode, it is necessary that 

the relative degree (n–m) of Wl (s) be one or two. 

Proof: See [16]. 

 

Remark 4: According to Theorem 2, when condition (57) is not satisfied (i.e. when the relative degree of 

( ) ( )FOG s H s  is less than two, and for some systems with the relative degree equal to two), then the ideal sliding 

mode occurs. 

 

In the ideally sliding-mode condition, the switching frequency grows with no bound. However, in practice, 

since the sampling time τ  is not zero, the switching frequency cannot be infinite. In this condition, the 

oscillation frequency obeys the following equation [14, 16]: 



( ) ( ) 0exp( . ) 180FO s s sG j H j j τ∠ Ω + ∠ Ω + ∠ − Ω = −                                        (59) 

Therefore, it can be concluded that for systems in which ( ) ( )FOG s H s  satisfies the ideal sliding-mode condition, 

the switching frequency grows to the largest possible switching frequency that it can be computed from (59).  

 
Remark 5: According to the fast-mode dynamics of the observer GFO , presented in (50), E and L should be 

such that conditions given in Theorem 2 (i.e. conditions for the ideal sliding mode) are satisfied.  

As it will be shown in Theorem 3, the oscillation frequency or relay equivalent gains should not be very large 

to make the observer susceptible to measurement noises.  

 

4.  Noise Effect Reduction and Design of H(s) 
In the last section, it was showed that ( )FOG s  can be determined by vectors E and L. In this section, the effects 

of the measurement noise on the estimated states are analyzed. Then, in order to suppress the measurement 

noise, a procedure for the design of ( )H s , ( )FOG s  and d will be given. 

 

4.1. Noise effect analysis 

Assume the system output in (1) is corrupted with measurement noise as  

yω ω= +Cx ,                                                                        (60) 

where yω ∈ℜ  indicates the noisy output signal of the system and ω ∈ℜ  is an additive bounded noise with 

ω χ≤ . 

 

Theorem 3: Consider the system in (1), the input signal of the relay in (10) and (11) and the noisy system output 

in (60). Then, increasing the amplitude of ( ) ( )s sFOG j H jΩ Ω  decreases the noise effect in the fast and slow-

modes of the input signal of the relay ysσ , and hence, better estimation of states. Moreover, increasing the gain 

of the relay element d has the same effect on the fast-mode dynamics. 

Proof: First, the noise effect on the fast-mode of yσ  is analyzed. Let yω be in the frequency domain of the fast-

mode signals. Then, the fast-mode amplitude of (5) can be written in the frequency domain as  

( ) ( ) ( )ys s s s sj Y j Y j aωΩ = Ω − Ω =Σ ,                                                 (61) 

where a is the same as before (i.e. the amplitude of the input signal of the relay element), ( ) { ( )}Y s y tω ω= L  

and ( ) { ( )}s sY s y t= L . Using (55), (5) can be written as 

( ) ( ) ( ) ( ) ( )s s s s FO s s ys sY j Y j K G j H j jωΩ = Ω − Ω Ω ΩΣ .                                   (62) 

Then, using (35) and (62), it gives 



( )
( )

( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( )
2

2

1 1
4 8

sys s s

s s s s

s FO s s FO s s s

Y jj Y j
Y j Y j d dY j G j H j G j H j Y j

ωω

ω ωπ π

ΩΩ Ω
= − = −

Ω Ω
Ω + Ω Ω − Ω Ω Ω

Σ

 (63)  

Clearly, by selecting d and ( ) ( )FO s sG j H jΩ Ω  large enough, it results that ( ) ( ) 1ys s s sj Y jΩ Ω ≈Σ . This 

means that the effect of the noisy output signal to the relay input signal (i.e. ysσ ) will be reduced. Similarly, for 

the slow-mode domain, let assume yω be in the frequency domain of the slow-mode signals. Then, according to 

(37--42) and (60), GSO  in presence of measurement noise becomes 

( ) ( ) ( ) ( ) ( )0 0 0 0 0ˆG : , , ,SO n nK u u u N Kελ ω= − − + − + − ⋅ −σ A EC LC σ f x f x E x E E&                 (64) 

Hence, selecting nK  small enough decreases the influence of the measurement noise in the slow-mode of the 

observer.  

As a consequence, larger values for ( ) ( )FO s sG j H jΩ Ω  (or equivalently, smaller values for nK ) can 

suppress the effect of measurement noise in the state estimation. This can be achieved by the appropriate design 

of ( )sH j Ω .                                                                                                                                              □ 

 

Remark 6: Since Theorem 3 and Lemma 1 provide two different values for the amplitude of the relay gain (d), 

the larger d should be selected, according to (63). 

 

Remark 7: Based on Theorem 2, larger values for ( ) ( )FO s sG j H jΩ Ω  are desired in order to reduce the 

effect of the measurement noise. However, according to (56) and Remark 3, this may yield longer transient times 

and less robustness to disturbance rejection due to small values of nK . Therefore, the selection of the fast and 

slow-mode gains ( sK and nK ) is based on the tradeoff between the noise reduction and the robustness of the 

observer.  

This fact suggests the design of a variable relay equivalent gain technique, where the gain should be large in 

order to obtain fast transient response and more robustness against disturbances. On the other hand, this gain 

should become smaller for better noise reduction. The procedure for designing this variable gain will be given in 

the following section.  

 
4.2. Noise effect reduction using variable gain technique  

This section provides a method that can help the sliding-mode observer to be less sensitive to the measurement 

noise. The design is based on the idea that adding a zero to the ( )FO sG j Ω  makes its amplitude larger in the 

switching mode, which in turn makes the amplitude of the gain Kn smaller (according to (56)). It is important to 

note that according to Theorem 2, adding a zero to the ( )H s  brings the observer closer to the ideal sliding-mode 

conditions. In order to design a variable equivalent gain for the relay, consider the following structure for 

( )H j Ω  



( ) ( )1H j jαγΩ = + Ω ,                                                                  (65) 

where γ  is a positive constant and 1α ≥  is a variable parameter, which will be defined later on. The amplitude 

and the phase angle of ( )H j Ω  are 

( ) ( )21H j αγΩ = + Ω                                                                  (66) 

( ) ( )1tanH j αγ−∠ Ω = Ω .                                                                    (67) 

According to (66), the amplitude of ( )H j Ω  varies proportionally with α . Therefore, according to (55) and 

(56), increasing α  decreases nK  and sK  and vice versa. 

As it was mentioned before and according to Remark 7, larger values of ( )sH j Ω  makes the observer less 

sensitive to the measurement noise but incurs more state estimation errors, and vise versa. Hence, γ  and α must 

be defined such that nK  is not too large and not too small.  

 

Design of γ   

On one hand, γ  must be selected such that nK  is large enough to have fast response and better disturbance 

cancellation; this case corresponds to the minimum value of α (i.e. min 1α = ). On the other hand, γ  must be 

selected such that nK  is small enough to have less sensitivity to the measurement noise, based on Theorem 3; 

this case corresponds to the maximum value of α . 

 

Design of α   

According to Theorem 1 and based on the inverse relationship between α and the relay equivalent gains in the 

fast and slow-modes (i.e. nK and sK ), α must be equal to one to provide a high equivalent gain for the relay 

when the estimation error is significant. This will provide better performance for the state estimation and the 

disturbance rejection. Therefore, the minimum value of α is equal to one. On the other hand, when the estimation 

error is small enough, α must become larger to reduce the relay equivalent gain and consequently making the 

observer less sensitive to the measurement noise. It should be noted that α should not be very large since it 

makes nK very small, which leads to slower tracking of the system states. Based on these points, a proper 

candidate for determining α is proposed as follows: 

( ) ( ) 0
0 2

0.5 ,1
y

y

e σχ

α σ = +
 
                                                                (68) 

where χ  is the upper bound of the norm of measurement noise. In (68), when the input signal of the relay 

element 0( )yσ  changes from χ  to 0.2χ , α increases from 1.05 to 1.33, respectively. Consequently, nK  

decreases from ( ) ( )2 2
0 1 1 1.05K γ γ+ Ω + Ω to ( ) ( )2 2

0 1 1 1.35K γ γ+ Ω + Ω , respectively, where 0 nK K=  

for 1α = .  Figure 3 shows (68) for 0.2χ = . The amplitude of nK decreases when the estimation error 0( )yσ  is 

significant with respect to the measurement noise (i.e. when 0y χσ ≈ ). Hence, when 0yσ  (i.e. the input signal to 



relay element or the estimation error of system’s output in the slow mode) becomes small, nK  and sK  decrease 

in order to have less sensitivity to the input measurement noise. 

Based on the above discussions, the following criteria are proposed for the Variable Relay-Equivalent Gain 

(VREG) technique: 

• γ  is selected such that the amplitude of oscillations a (corresponding to min 1α = ) is approximately equal 

to 0.75 χ . 

• maxα  is selected such that the amplitude of oscillations is approximately equal to 1.5 χ . 

 

Remark 8: In (65), and based on the above procedure, γ  is determined for sΩ = Ω , where sΩ  is designed high 

enough and far from bandwidth of the system ( bΩ ). Hence, γ  will be a small constant, which in turn gives 

small values for jαγ Ω  in (69) for bΩ < Ω . Hence, for bΩ < Ω , we have ( ) 1H j Ω ≈ , which satisfies (7). 

 

5. Application to Bioreactor 
In this section, the performance of the proposed observer is illustrated using a typical bioreactor with biomass 

production and substrate concentration which belongs to the class of (1). The state equations of this bioreactor 

are [22, 23] 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )( )

1 2
1 1

1 2

1 2
2 2

1 2

1

m

m

m
f

m

x t x t
x t Dx t

K x t x t
x t x t

x t s x t D
Y K x t x t

µ

µ

= −
+

= − + −
+

&

&
                                             (69) 

where the specific growth rate is assumed to follow the Contois model, 1x  is the biomass concentration, 2x  is 

the substrate concentration, fs is the inlet substrate concentration, D is the dilution rate, Km is the reaction 

constant, Y is the yield of cell mass, and mµ is the maximal specific growth rate. It is assumed that the biomass 

x1(t) is measurable on line by a biosensor [24].  

Farza et al. have shown that this system is observable [25]. In practice, mµ  and Km  may be uncertain and 

time-varying. Hence, let 0
1( )m m d tµ µ= +  and 0

2 ( )m mK K d t= + , where 0
mµ  and 0

mK  are the known nominal 

parameters, respectively, and d1(t) and d2(t) are model of the bounded additive time-varying parametric 

uncertainties, respectively. Hence, based on (1), the uncertain system is defined as 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )( ) ( )

0
1 2

1 10
1 2

0
1 2

2 20
1 2

, ,

1 1 ,

m

m

m
f

m

x t x t
x t Dx t M t

K x t x t

x t x t
x t s x t D M t

Y YK x t x t

µ

µ

= − +
+

= − + − −
+

x

x

&

&
 

where ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

0
1 2 1 2

0
1 2 1 2

, m m

m m

x t x t x t x t
M t

K x t x t K x t x t
µ µ

= −
+ +

x  is the unknown function. 

The goal is to design a sliding mode observer based on (3) to estimate the process states in presence of the 

measurement noise and model uncertainties using the method developed in this paper.  



In addition, the model and observer simulations have been carried out using a constant input substrate 

concentration and dilution rate. The parameter values used in simulations are as follows: 
0 11hmµ −= , 0 1mK = , 1Y = , 10.5hD −= , 15 g.lfs −= , ( )1 0.1sin 1.5d tπ=  , ( )2 0.05sind tπ= . 

With these parameters, the uncertainty function ( , )M tx is shown in Figure 4. The feedback gains (using the 

pole placement technique) are [2 1]T= −L , which satisfies conditions (21) and (48). Then, according to Lemma 

1 and Theorem 3 the amplitude of the relay gain is 50d = .   

The initial states of the system and the observer are selected as ( )0 [1 1]T=x and ( )ˆ 0 [0  0.5]T=x , respectively. 

In order to show the fast switching property of the proposed method (Remark 5) E  and L  should be such that 

( )FOG s  is stable and its relative degree is less than two. This provides the highest possible switching condition 

or the ideal sliding-mode condition. Since [1 1]T= −E  then it gives ( ) 1 ( 2.5)FO sG s += , which has the 

relative degree of one with stable eigenvalue. Hence, the ideal sliding-mode occurs.  

By selecting the sampling time equal to 41 10 sτ −= ×  and considering (59), the switching frequency and the 

period of oscillations will be equal to 15700 rad/ssΩ =  and 42 4 10 ssπ −Ω = × , respectively. In this condition 

according to (56), the equivalent gain of the relay in the slow-mode of the proposed observer becomes 

( ) ( ) ( )
1 1 7834

2 0.0006382 12n
FO s s

K
G j H j

= = =
× ×Ω Ω

. 

Based on (58), the amplitude of oscillations is 

( ) ( )4 4 50 0.0006382 0.0041FO s s
da G j H j

π π
× ×

= Ω Ω = = . 

Since the frequency of oscillations sΩ  is selected high enough, a simple low-pass filter can easily reject high 

frequency signals. The selected low-pass filter is 

( ) ( )( )1 0.0073 1 0.0073 1G s s s= + +  . 

Figure 5 shows simulation results for ysσ . As this Figure indicates, the period of oscillations and a are equal to 

44 10 s−×  and 45×10-4, respectively, which confirms the values obtained from the equations.  

Next, the effect of measurement noise on the state estimation is analyzed. The measurement noise is a white 

noise with uniform distribution in [–0.2, 0.2]. Hence, the bound of the measurement noise is equal to 0.2χ = .  

To improve the estimation accuracy in presence of the measurement noise, the proposed VREG technique, 

discussed in section 4.2, is applied here.  

Figure 6 shows performance of the proposed method in noise reduction for state estimations for two cases:  1) 

Estimation using the conventional sliding mode observer with fixed relay equivalent gain, which is equal to 

7834nK =  (i.e. the same value that was used in the first part of simulations). This property is common with all 

conventional sliding-mode observers, where researchers use a relay element, 2) Sliding mode observer using the 

VREG technique with 32 10γ −= × and 0101 (1 )ye σα = + . 

As it was discussed before, in VREG technique, nK  is large when the estimation error is considerable and small 

when the estimation error is small. This property provides faster convergence of the estimation error and less 

sensitivity to the measurement noise as compared to the conventional sliding-mode observer.  



Figure 7 shows the input signal of the relay element ( ysσ ) using the conventional sliding-mode observer (i.e. 

with fixed gain) and the VREG technique in presence of the measurement noise. This figure shows that VREG 

technique provides less sensitivity to the measurement noise in the input signal of the relay element. That is, the 

oscillation frequency is fixed and is not affected by the noise. Figure 8 shows variations of α in VREG 

technique. 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

σy0

α

 
Figure 3. Variations of parameterα with respect to the input signal of the relay
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Figure 5. Signal ysσ  using conventional sliding mode observer 
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Figure 6. 1( )x t  and 2 ( )x t  in presence of measurement noise 
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Figure 7. Input signal of the relay ysσ in presence of measurement noise 
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Figure 8. Variation of α using VREG technique 

 

6. CONCLUSION 

Designing a relay based sliding-mode observer was introduced in this paper. This observer uses the high gain 

property of the sliding-mode observer before the switching occurs in order to have fast response and also 

providing conditions for reaching the sliding surface. Then, in the switching state, signals are decomposed into 

the slow- and fast-modes. The main contribution of this paper is that it provides a method for analysis of the fast 

and slow-modes of signals in the switching condition for nonlinear sliding-mode observers. Moreover, it gives 

the relationship between these modes.  In the slow mode, a method is proposed such that the high-gain observer 

properties are obtained in order to reject this mode. In addition, the fast mode is designed such that 1) the relay 

equivalent gain provides conditions for good tracking and stability in the slow mode and 2) the frequency of 

oscillation becomes high enough such that it can be rejected by a simple low pass filter. Furthermore, sensitivity 

of the observer against the measurement noise was analyzed and it was showed how it can affect the frequency 

and amplitude of oscillations. At the end of this paper, a variable relay equivalent gain (VREG) technique was 

proposed to give the observer faster response and less sensitivity to the measurement noise. Simulation results on 

a bioreactor process showed that the proposed technique provides good tracking and better noise rejection as 

compared to the fixed equivalent gain technique, which is used in conventional sliding-mode observers. 
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