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iAbstract--This paper presents a method for modeling and 
estimation of the State Of Charge (SOC) of lithium-ion batteries 
using neural networks and the Extended Kalman Filter (EKF). 
The neural network is trained off-line using the data collected 
from the battery charging process. This network finds the model 
needed in the state space equations of the EKF, where the state 
variables are the battery terminal voltage at the previous sample 
and the SOC at the present sample. Furthermore, the 
covariance matrix for the process noise in EKF is estimated 
adaptively. The proposed method is implemented on a lithium-
ion battery to on-line estimate the actual SOC of the battery. 
Experimental results show good estimation of SOC and fast 
convergence of the EKF state variables. 
 

Index Terms: Batteries, monitoring, estimation, Kalman 
filtering, neural networks. 
 

I.  INTRODUCTION 

OME BATTERIES are sensitive to overcharge and/or 
deep discharge, which may lead to permanent damage 
to these devices. In the charging process, it is usually 

desirable to charge the battery with the highest and safest 
current in order to reach the full State of Charge (SOC) as 
quickly as possible without entering the overcharge region 
[1], [2]. Therefore, it is necessary to measure the SOC with 
good accuracy for proper battery managements. Moreover, 
the State of Health (SOH) of batteries requires maintaining 
the SOC within certain limits at all times [2], [3]. 

The SOC definition, in the simplest way, is the ratio 
between the saved energy in the battery and the whole 
energy that can be saved in it [2]. The SOC estimation is not 
an easy task and depends on the battery type and the 
applications for which they are used. Generally, there are 
two categories for SOC estimation: indirect methods and 
direct methods. In indirect methods, the SOC is estimated 
from some physical properties of the battery, such as the acid 
density or the cathodic galvanostatic pulses. Estimating these 
quantities needs precise measurements and has several 
limitations in practice [2], [4]. The other indirect method is 
measuring the open-circuit voltage of the battery. In this 
method, the battery must be relaxed for some time to allow 
its open-circuit voltage reach a steady-state condition. 
Therefore, this method is not practical in applications where 
the battery is not allowed to be opened from the electric 
circuit [2], [5]. In other methods, SOC is estimated using the 
discharge voltage of the battery [6]. Impedance spectroscopy 
is a commonly used indirect method for electrochemical 

processes such as batteries. This method is used not only for 
the SOC estimation but also for the SOH estimation as well 
[7], [8]. However, this approach requires some additional 
measurements that make it suitable in laboratory tests, but 
not in practical applications [2].  In [9] the battery impedance 
is measured directly through varying frequency to improve 
the charging process. In [10], the electromotive force voltage 
is estimated, from which the SOC of the battery is 
determined. In this work, it is necessary to measure the 
battery impedance with ac current and voltage, which seems 
to be suitable for laboratory tests.  

Some researchers have used fuzzy logic to model the 
relationship between the battery SOC and its parameters 
derived from impedance spectroscopy measurements [11], 
[12]. Among the direct methods for SOC estimation is the 
Ampere-hour counting technique. This method needs the 
initial SOC, calculation of the internal consumptions by the 
battery, and accurate current sensors [13]. Artificial neural 
networks have also been used by some researchers for the 
SOC estimation [14]-[19]. In this method, there is need for 
some input-output data as the training set, which must be 
obtained by some other estimation methods. The trained 
network can then be used to estimate the SOC. 

The Kalman filter is a powerful tool for the state 
estimation of systems. Some researchers have used this filter 
to estimate the open-circuit voltage or other parameters of 
batteries that have a direct relationship with the SOC [20], 
[23]. In [24] and [25], the Kalman filter is employed to 
estimate some physical quantities, which have direct effects 
on the SOC. In some papers, the SOC is defined as a model 
state and is estimated using the Kalman filter [3], [26]-[28]. 
However, the Kalman filter needs a suitable model of the 
battery. Moreover, due to the use of feedbacks in this filter, 
there is need for proper initialization of states; otherwise, its 
states may not converge. 

In this paper, a state-space model of the SOC is proposed 
that is approximated using a neural network. Then, using the 
Extended Kalman Filter (EKF) along with the proposed 
model, the battery SOC is estimated. The proposed method is 
implemented and tested on a Li-Ion battery. The experimental 
results show good accuracy and quick convergence for 
estimating the SOC of lithium-ion batteries. 

This paper is organized as follows. Section 2 describes 
the battery model. Section 3 presents the proposed SOC 
estimation algorithm. Section 4 shows the experimental 
setups and results. Finally, section 5 draws some conclusions 
and gives directions for the future work. 



II.   MODELING 

In this paper, the SOC is defined as an independent state-
space variable and is modeled using a Radial Basis Function 
(RBF) neural network [29]. 
 
A.  SOC as the state space variable 

The SOC can be defined as the ratio between the saved 
energy in a battery and the whole energy that could be saved 
in it [2, 26] 
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where ( )z t  is the SOC, 0( )z t is the initial SOC, nC  is the 
nominal capacity, ( )i t is the instantaneous current (positive 
for discharge and negative for charge), iη is the Columbic 
efficiency ( iη = 1 for discharge and iη  = η  ≤ 1 for charge) 
[26]. 

In order to employ the Kalman filter, it is necessary to 
discretize the model given in (1). Assuming that the sampling 
rate t∆  is small enough and substituting the integral with the 
Euler approximation, Eq. (1) can be written as 
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As Eq. (2) shows, the SOC is defined as an independent 
state variable in the state space model. Other state variables 
and the output equation will be given in the next section. 

B.  The proposed model 

The SOC of batteries has a nonlinear relationship with its 
terminal voltage and current [27]. It is usually not an easy 
task to obtain this nonlinear relationship. One way to find this 
relationship is to analyze the chemical reaction equations, 
which is very complicated. Fortunately, neural networks are 
universal approximators and can approximate any nonlinear 
function with desired accuracies [29]. In this paper, a RBF 
network is used to find the required nonlinear model. Fig.1 
shows the structure of an RBF network, where the inputs are 
the battery voltage at step k-1, the estimated SOC at step k, 
and the battery terminal current at step k. The output of the 
neural network approximates the battery terminal voltage at 
step k. In this network, the activation functions of neurons in 
the hidden layer are Green functions (e.g. Gaussian 
functions) in the following form: 
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where [ ]( 1) ( ) ( ) T
k v k z k i k= −r  is the input vector applied 

to the network at the thk  step, it  and iσ  are the center and 
the standard deviation of the Gaussian function, respectively, 
and M  is the number of neurons in the hidden layer. In fact, 
the output of this neural network (i.e. the battery terminal 
voltage at step k) is the sum of the weighted Gaussian 
functions as 

 
Fig. 1.  Structure of the RBF neural network for modeling. 
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where ( 1, , )iw i M= … is the weight vector connecting the ith 
neuron in the hidden layer to the output layer and 0w  is the 
bias weight for the linear output neuron. The free parameters 
of this network are it , iσ , iw , and 0w , which are defined 
during the training phase of the network using algorithms 
such as the back-propagation and the least mean square [29].  

Considering the battery terminal voltage at step 1k −  and 
the SOC at step k  as the first and the second state variables, 
respectively, the state vector is defined as 
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where v  and z  represent the terminal voltage and the SOC 
of battery, respectively. Using the above definition as the 
state vector, the state space model can be defined in the 
following form: 
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where ( )kF r  is a nonlinear function, which will be 
approximated by the RBF network, vectors [ ]1 2

T
ω ω=ω  

and [ ]1 2

T
υ υ=υ are defined as the process and the 

measurement noises, respectively, with covariance matrices 
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Moreover, kr  (i.e. the input vector to the neural network) is 
defined as 

:
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where kx  is given in (5). Notice that, in the proposed model, 
the terminal voltage of battery at steps k  and 1k − , which are 
shown in the output equations as 1 ( )y k  and 2 ( )y k , 
respectively, are used in the proposed model. 
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III.  ESTIMATION ALGORITHM 

The estimation algorithm, in this paper, is based on the 
extended Kalman filter. The performance of Kalman filters 
depends on several factors, among them, dependency on an 
accurate state space model of the system, which was 
proposed in the previous section. 

 

A.  Extended Kalman filter 
The Kalman filter that is estimating the states of a linear 

time-varying model, which approximates the nonlinear 
model, is called the Extended Kalman Filter (EKF). Hence, if 
the system, whose states are to be estimated by the EKF, has 
a nonlinear model, then the nonlinear system must be 
linearized first around the operating point with a time-varying 
approximation. Even though the performance of EKF is not 
optimal, it works fine for most applications [30]. For 
convenience, a summary of the EKF algorithm is given in 
Table 1. 

One important issue in designing a Kalman filter is the 
proper selection of covariance matrices for measurement and 
process noises. The covariance matrix of the measurement 
noise (R) can be determined from the battery data. The 
variances can be obtained from the square of the root-mean-
square (RMS) of noisy measurements on the battery terminal 
voltage. Moreover, it is assumed that the variances are 
independent and have Gaussian distributions [21]. The 
covariance matrix of the process noise (Q) is estimated in this 
paper using the Maybeck's estimator as [31] 
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where matrices G, A and P are given in Table 1, N is the 
number of recent sample periods and v  is the innovation 
vector calculated as 
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B.  Linearizing the Proposed Model 

In order to apply the EKF to the proposed nonlinear 
model in (6), the battery model must be linearized at 
sampling instants. Let define the nonlinear transition matrix 
function ( , )k kf x u and the nonlinear measurement matrix 

( , )k kh x u  as 
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Differentiating ( , )k kf x u and ( , )k kh x u  with respect to kx  

and then letting ˆk k=x x  and ˆk k
−=x x , respectively, yields 
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where ( )kF r  is the output of the RBF network. Hence, 
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Table 1:  Summary of the EKF algorithm. 
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where kω  and kν  are independent, zero mean, Gaussian 
process and measurement noises with covariance matrices 

[ ]T
k k kE=Q ω ω  and [ ]T

k k kE=R ν ν , respectively. 
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State estimate propagation 
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Measurement update 
Kalman gain matrix 
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in which, the derivative of ( )k iϕ∂ −r t  with respect to kx  
can be found using (3) as 
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Moreover, assuming ( )ϕ ⋅ is a Gaussian function as in (3), it 
gives 
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Substituting (15), (16) and (17) into (14) yields 
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IV.  IMPLEMENTATION AND EXPERIMENTAL SETUP 

The proposed SOC estimator is tested on a lithium-ion 
battery. Fig. 2 shows the general structure of the experimental 
setup. The hardware consists of a special interface circuit for 
sampling the current, the voltage, and the batter temperature. 
The sampled data are transferred to a computer via the serial 
port. The programming language for data manipulation and 
processing is Visual C++. In addition, for acquiring data for 
training the RBF neural network and for testing the proposed 
SOC estimator, a battery charger has been included that 
controls the on-off time of charging and discharging the 
battery. The charging technique is based on the reflex 
charging method, which is considered as one of the most 
effective charging schemes [32]. In this charging method, the 
battery is first charged with a constant current for a small 
period of time, followed by discharging for a very short time 
and a relax interval at the end. The entire charging process 
can be viewed on the computer monitor (Fig. 2). 

Fig. 3, 4, and 5 show the designed circuits for the 
sampling interface, the signal conditioning, and the 
controllable charger, respectively. As Fig. 3 shows, 
microcontroller 89C52 is used to transfer the sampled 
voltage, current, and temperature of battery to the computer. 
Moreover, this microcontroller controls the on-off time of 
charging and discharging by applying the appropriate inputs 
to the driver, based on the given commands by the computer. 

For the temperature sensing, an LM35 sensor is used. 
This sensor is calibrated in Kelvin and has 10 mV/ C°  scale 
factor. In the proposed method, the battery temperature plays 
no role in the charging process. It is shown only for 
monitoring purposes. The entire experimental setup is carried 
out at room temperature. For the current sensing, since the 
maximum current of the charger is set to about 1.5 A, a 0.1 
ohm 5W resistor is used. Moreover, for voltage sensing, a 
differential amplifier is employed. For data sampling, the 
ADC0809 is used. This chip has a resolution of 8 bit and can 
convert analog inputs to discrete outputs in less than 50µs. 
For sampling, the analog input in all 8 channels must be in 
the range of 0 to 5V. Hence, it is necessary to use a signal 
adaptor to match the sensors outputs with the analog inputs of 
ADC0809 through the signal conditioning circuits (Fig. 4). 

Fig. 5 shows the controllable charger, designed for 
acquiring the data as well as testing the proposed technique 
for the SOC estimation. The charger consists of a current 
source and a discharging 3.9Ω/5W resistor used as a load. 
These two circuits are controlled by the SW1 and SW2 
inputs, respectively. Since Li-Ion batteries are very sensitive 
to voltages above their nominal voltages, a voltage regulator 
is designed to maintain the battery terminal voltage at 4.2V. 
This voltage regulator consists of Q6, Q7, OP07, and LM317 
(Fig. 5).  

 
A. Battery SOC Estimation 

As it was mentioned in Section 2, the battery is modeled 
using an RBF neural network, which is trained using the data 
obtained from the battery. Since the SOC of the battery is one 
of  the inputs to the neural network, it is necessary to measure 

Fig. 2.   General structure of the proposed system. 
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Fig. 3.   Interfacing and sampling circuits. 
 
the SOC using one of the available methods. For this reason, 
the Ampere-hour counting technique, given in (2), is 
employed for collecting the training data. For calculating iη , 
the energy delivered by the battery during discharging is 
divided by the rated energy (the nominal capacity) of the 
battery nC . Moreover, the sampling period t∆ is equal to 0.8 
second for the SOC estimation. It should be mentioned that 
the sampling rate of the experimental setup is 50 ms, which is 
used for display purposes, but the SOC estimation process is 
updated every 800 ms. 

Fig. 6 shows the data acquired from the experimental test 
on a 1.2 Ah lithium-ion battery. These data are used for 
training of the RBF network. Although the battery 
temperature is measured and saved here, it is not used for the 
estimation or charging processes; the experiments have been 
carried out at room temperature. 
The covariance matrix R is determined from the data in Fig. 
6, based on the square of the rms error between the actual and 
noisy terminal voltage, and is equal to diag 0.01 0.01 .  =R  
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Fig. 4.  Signal conditioning circuit 
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Fig. 5.   Controllable charger circuit (driver) with voltage limiter 
 
The covariance matrix Q is determined adaptively using (10) 
with initial value equal to diag[0.005 0.005] . The variable N 
is selected equal to five. It is important to mention that the 
proposed algorithm is not very sensitive to the initial value of 
matrix Q and the parameter N. This is mainly due to the fact 
that matrix Q is adaptively adjusted to cope with the changes. 
The data in Fig. 6 are saved in the computer using the 
developed software. In order to show how the variables in 
Fig. 6 are varying with time, 500 seconds of Fig. 6 is shown 
in Fig. 7. 

Since the neural network needs to be trained with 
different charging conditions, the entire charging cycle is 
divided into three parts: the first part is performed with 70% 
duty cycle, while the second part is carried out with 35% duty 
cycle, and the third part is performed with 20% duty cycle.  

In order to avoid overtraining of the NN, 3600 samples 
are selected out of 240000 samples (i.e. 3 samples out of 
every 200 samples). The inputs to the neural network are 

( 1)v k − , ( )i k , and SOC( )k , while the output is the battery 
terminal voltage at the present sample ( )v k . There are 30 
neurons in the hidden layer with 1.0 ( 1, ,30)i iσ = = … . These 
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Fig. 6. The experimental data obtained from a full charging cycle of a 1.2Ah 
Li-Ion battery. 
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Fig. 7. 500 seconds of Fig. 6. 
 
numbers are usually defined with trial and error [29]. At the 
end of the training phase, the performance index (i.e. sum of 
the squared errors) for all 3600 data is almost equal to 0.17. 

Next, the trained neural network is used as a model in the 
EKF to estimate the same SOC shown in Fig. 6. The block 
diagram of the estimation algorithm is shown in Fig.8. The 
result of the SOC estimation is shown in Fig. 9. The RMS 
error (between the actual SOC and the estimated one) is equal 
to 2%, which can be considered as a good accuracy.  Fig. 10 
shows how the elements of the estimated covariance matrix 
for the system noise are varying during the SOC estimation. 
 

B.  Experimental Tests 

Up to this point, training and testing of the RBF neural 
network (in conjunction with the EKF) are performed off-
line. Next, the designed SOC estimator is tested in the 
controlled and on-line charging processes for the same 
lithium-ion battery. The results are shown in Figs. 11-14. Fig. 
11 shows the battery terminal voltage, the charging current, 
the battery temperature, and the actual SOC waveforms. For 
clarity, 500 seconds of  Fig. 11 is depicted in  Fig. 12. Fig. 13  



 
 

Fig. 8. Block diagram of the implemented estimation algorithms  
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Fig. 9. The desired SOC measured by the Ampere-hour counting technique 
(dashed line) and the estimated SOC using the proposed method (solid line). 
 
shows the actual and the estimated SOC during the entire 
charging process. The RMS error (between the actual SOC 
and the estimated SOC) is almost 3%. As Fig. 11 shows, at 
the beginning of the charging process, the reflex charging 
method has been used followed by the pulse charging 
technique (at about SOC=90%), in which the negative pulses 
have been eliminated for the remaining charging period. 

Next, for testing the designed estimator with different 
initial conditions for the state variables, the battery is charged 
to about 65% of its nominal capacity. Then, it is separated 
from the charger and the charger is disconnected from the 
power supply for about 30 min. Next, the process of charging 
battery is resumed using the same initial conditions as if the 
battery were empty. The test results are shown in Figs. 14-18. 
As it is clear from Fig. 14, the estimated SOC converges 
quickly to the actual SOC in less than 2.5 min, which shows 
that the proposed estimator is robust against different initial 
conditions. The RMS error is almost 3% for this case. Figs. 
15 and 16 show the battery terminal voltage, the charging 
current, the battery temperature, and the actual and the 
estimated SOC waveforms. Finally, Fig. 17 shows the 
variations in the elements of the covariance matrix Q.  

Variations in Q21 at the beginning are indications of the 
quick reaction of the Kalman filter to reach the actual SOC. 
The experimental setup is shown in Fig. 18. 
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Fig. 10. Variations in the system noise covariance matrix Q using the 
adaptive procedure 
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Fig. 11. Controlled battery charging using the proposed estimator. 

 
 

V.  CONCLUSION AND DISCUSSIONS 

A SOC estimator for the lithium-ion batteries using neural 
networks and the extended Kalman filter with adaptive 
covariance matrix for system noise was proposed in this 
paper. The neural network is of RBF type and was trained 
off-line to find the appropriate model needed in the extended 
Kalman filter, which estimates the SOC of the battery. The 
experimental results of the proposed estimator showed good 
accuracy and fast convergence to the actual state variables, 
independent of the charging conditions and/or initialization of 
the Kalman filter. One important point is that the data for 
training the neural network was collected from a brand new 
and healthy battery. Hence, the trained neural network may 
not yield acceptable output when the battery ages. This 
problem can be resolved using data gathered throughout the 
lifetime of the battery. The other solution is to train the neural 
network adaptively with on-line data. These issues and the 
effect of the battery temperature on the SOC estimation and 
the charging current can give directions to the future works. 
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Fig. 12. 500 seconds of Fig. 11. 
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Fig.13. The actual and the estimated SOC during charging process, using the 
proposed estimator. 
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Fig. 14. Testing the proposed SOC estimator with different initial conditions 
for state variables of EKF (disconnecting the power supply for 30 min.). 
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Fig. 15. Controlled battery charging using the proposed estimator. 
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Fig.16: The first 500 seconds of  Fig. 16. 
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Fig. 17. Variations in the system noise covariance matrix Q using the 
adaptive procedure 



 
 

Fig. 18. The experimental setup 
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