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Abstract 
This paper, presents a robust adaptive control method for a class of non-linear non-minimum phase systems with uncertainties. 

The development of the control method comprises of two steps. First, stabilization of the system is considered based on the avail-
ability of the output and internal dynamics of the system. The reference signal is designed to stabilize the internal dynamics with 
respect to the output tracking error. Moreover, a combined neuro- adaptive controller is proposed to guarantee asymptotic stability 
of the tracking error. Then, the overall stability is achieved using the small gain theorem. Next, the availability of internal dynam-
ics is relaxed by using a linear error observer. The unmatched uncertainty is compensated using a suitable reference signal. The 
ultimate boundedness of the reconstruction error signals is analytically shown using the extension of the Lyapunov theory.  The 
theoretical results are applied to a translational oscillator/rotational actuator model to illustrate the effectiveness of the proposed 
scheme. 
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1.  Introduction 
Control of nonlinear non-minimum phase systems is a 

challenging problem in control theory and has been an ac-
tive research area for the last few decades. Several funda-
mental methods have been proposed in this area based on 
the state-feedback control, including the output redefinition 
and the zero assignment (Kazantzis, 2007; Talebi et al., 
2005), the stable inversion, and the iterative learning control 
for systems with predefined reference signals (Norrlof and 
Gunnarsson, 2001; Sogo et al. 2000).  Moreover, the sliding 
mode control method (Yan et al., 2006), neural networks 
and the fuzzy logic (Lee, 2004; Chen and Chen, 2003) have 
been successfully applied to control uncertain non-
minimum phase systems.  

In the case of output feedback control, the problem is 
more complicated. Contrary to linear systems, state obser-
vation of nonlinear systems is often not an easy task, even 
for many simple nonlinear systems. The main issue in out-
put feedback control of non-minimum phase systems 
stems from the fact that information about state variables, 
associated with the zero dynamics, is vital in control de-
sign.  

Recently, many methods have been proposed for out-
put-feedback stabilization of uncertain non-minimum 
phase systems. Isidori (2000) has proposed a solution for 
semi-global output-feedback stabilization of non-minimum 
phase systems based on auxiliary constructions using a 
high-gain observer.  Global output-feedback stabilization 
using the backstepping and the small-gain techniques have 
been employed by Karagiannis et al. (2005) and Wang et 
al. (2008). Ding (2005) has proposed a design method for 

the semi-global stabilization of a class of non-minimum 
phase non-linear systems that can be transformed to the 
global normal form as well as to the form of linear ob-
server error dynamics. Sliding mode observers and output 
feedback sliding mode controllers for some classes of non-
minimum phase non-linear systems have also been studied 
by many researchers including Yan et al. (2004). These 
methods have considered the stabilization problem for 
nonlinear systems in which their nonlinearities and the 
high frequency gain depend only on the system output. 

Various results on the local and non-local stabilization 
of non-minimum phase non-linear systems have been pre-
sented that deal with the more general class of nonlinear 
systems using the universal approximation property of 
neural networks and fuzzy systems (Lee, 2004; Chen and 
Chen, 2003).  However, in these works, it has been as-
sumed that the system states are available. Hovakimyan et 
al. (2006) has been proposed a Gaussian Radial Basis Neu-
ral network (NN) using a tapped delay line of available 
measurement signals to compensate for modelling uncer-
tainties, as proposed in Lavretsky et al. (2003). Their 
method is applicable to a class of non-minimum phase 
nonlinear systems with known relative degree and if the 
non-minimum phase zeros are modelled to a sufficient ac-
curacy. In their work, the control is comprised of a linear 
controller and a neural network, and the adaptive laws 
have been given in terms of the output of a linear observer 
for the nominal system’s error dynamics as in Hova-
kimyan et al. (2002).  In addition, in their work, it was as-
sumed that the augmentation of an arbitrary fixed gain lin-
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ear controller must satisfy performance requirements in 
the absence of modelling errors. Their method is based on 
Lyapunov’s direct method which guarantees local ultimate 
boundedness of error signals.   
 

This paper presents an adaptive output-feedback control 
method for a class of observable and stabilizable non-
linear non-minimum phase systems. In the proposed me-
thod, only an approximate linear model of the nonlinear 
system is required with a few mild conditions. This linear 
model presents the non-minimum phase zeros of the non-
linear system with sufficient accuracy. In fact, there is a 
conic sector bound on the modeling error of the non-
minimum phase zeros that is referred to as the unmatched 
uncertainty.  Hence, the proposed approach can be applied 
to uncertain nonlinear systems, which have partially 
known Lipschitz continuous functions in their arguments. 
The system dynamics is described as two subsystems con-
sisting of the internal and external dynamics.  In Section 2, 
this class of nonlinear systems is introduced and  a pseudo 
control is proposed to estimate the unknown external dy-
namics modeling or the matched uncertainty.  The devel-
opment of the control method is performed in two steps.  
First, the input-to-state stability of internal dynamic is studied 
based on availability assumption of the output.  Then, the 
asymptotic stability of the output tracking error is proved 
using a combined output feedback controller. The stability 
of the closed-loop tracking error system is shown using the 
nonlinear small gain theorem (Jiang et al., 1996; Kara-
giannis et al. 2005) which is presented in Section 3.. In 
contrast to the method presented by Lee (2004) and Chen 
and Chen (2003), the modeling error of internal dynamics 
is compensated to achieve a semi-global stability.  
Therefore, only the information about the output and the 
internal dynamics are required to design an appropriate 
control which guarantees the asymptotic stability of the 
closed–loop tracking error system. 

Next, in Section 4, the availability assumption on the 
internal dynamics is removed by designing an observer for 
the error tracking nonlinear system. In this section, under 
milder assumptions, the unmatched uncertainties are com-
pensated using a reference signal and an adaptive robusti-
fying term is designed to eliminate the approximation error 
of the NN.  The robustifying term also guarantees the ro-
bustness against the parameter variations and small 
changes in the unmodeled dynamics. Moreover, a nonlin-
ear parameterized NN is used to gain sufficient  accuracy. 
In this case, it is proved that the states of the reconstruc-
tion error systems, created from the output tracking error 
system and observer, are ultimately bounded of the state is 
guaranteed. Therefore, a tracking output error depends on 
the observer and the approximation property of the NN. 
Hence, there is a trade-off between the relaxation of as-
sumptions and the tracking output error. 

Then in Section 5, simulations are carried out on the 
translational oscillator/rotational actuator (TORA) system 
to show the good performance of the proposed methods 
and to compare with newly proposed methods in the estab-
lished literatures.  

Finally conclusions are presented in Section 6. 

2.  Problem formulation  

In this section a class of nonlinear systems which is consid-
ered in this paper is introduced. The dynamics of these sys-
tems are described by two subsystems, the so-called internal 
and external subsystems.  A pseudo nonlinear control is 

proposed to estimate the unknown external dynamics 
modeling or the matched uncertainty. Consider the nonlin-
ear system  
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with the coordinates 1 1[ ] [ , ..., , , ..., ]T T T
r n r, z z −=z η η η , 

where r (1 )r n≤ <  is the relative degree, n rRη
−∈ Ω ⊂η  

is the state vector associated with the internal dynamics, 
r

z R∈Ω ⊂z  where ηΩ and zΩ  are the compact sets as-
sociated with their corresponding operating regions, and u  
and y  are the input and the output of the system, respec-
tively. The mappings 1: nf R R+ → and : nv R R→  are 
partially known and continuous Lipschitz functions with 
initial conditions ( ), ,0 0f =0 0  and ( ),v =0 0 0 . Note that 
the system (1) belongs to a class of nonlinear systems, the 
so-called normal (tracking) form (Isidori, 1995), and can be 
non-minimum phase. Hence, the stability assumption on 
the zero dynamics of the system is not required.  
Assumption 1. Assume that for all u R∈ , 

( ), , 0uf f u u= ∂ ∂ ≠z η .  This condition implies that the 
smooth function uf  is strictly either positive or negative 
on the compact set  ( ){ }, , , , .zU u u Rη= ∈ Ω ∈ Ω ∈z η z η  

Since the mappings 1: nf R R+ →  and : nv R R→  are 
partially known and continuous Lipschitz functions, the 
system (1) can be represented as the following expanded 
model:  
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where ( ), , uψ z η  and  ( ),∆η z η  are the unknown external 
and  internal dynamics modeling errors or the matched  
and unmatched uncertainty, respectively, and b  is a sca-
lar, rR∈m and , n rR −∈n f . Also 1[ ]T

r
rg g R= ∈g L  

and it is assumed that 1 2
1 1( ) r r

r rD s g s g s g− −
−= + + +L  is a 

Hurwitz polynomial. Define the pseudo control  

( )ˆ ,psu y uψ= ,                                                                (3) 

where the invertible function ψ̂  is the best available ap-
proximation of ψ .  Therefore, from (3) 1ˆ ( , )psu y u−=ψ . 
Define the modeling error of external dynamics as 

( ) ( ) ( )ˆ, , , , ,u u y uψ ψ∆ = −z η z η .                             (4) 

Substituting the ( ), , uz ηψ  obtained from (4) into the 
nonlinear model (2) yields  
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3.  Stabilization using output feedback and internal 
dynamics  

Define the error signal as 1 : de e y y= = − , 
( )

1 1
i

i i d ie e y z+ += = −&  for 1 1i r≤ ≤ −  and the pseudo con-
trol signal as  

1 ( ) 1r T
ps L ad R d du u u u b y b− −= − − + − m y                     (6) 

where ( 1)[ ]r T
d d dy y −=y L .   Then, the system (5) can 

be described as the following two subsystems: 
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where ( )
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and 1 ( 1) 1 1[ ]T
n r g− − ×=g 0 . 

The controller is designed in two phases. First, 
( )d dy y= η  is designed such that η -subsystem ( ηΣ ) be-

comes input-to-state stable (ISS) with respect to the input 
e. Then, a combined adaptive output feedback control law 
that utilizes the available measurement ( ),y t  is used to 
obtain the system output tracking for the trajectory dy , 
which is assumed to be r-times differentiable.  
Assumption 2. The pair 1( , )gF is stabilizable and the 
modeling error of the internal dynamics Δ′η  is bounded 
with a conic sector bound as  

0 1 1 2( , ) c c z c′∆ ≤ + +η z η η ,                                 (9) 
where 0c  and 2c  are unknown constants and 10 1c≤ <  is 
a known positive constant.   
 
3.1.  Input-to-state stability of the η -subsystem 

Considering the internal subsystem in (8), ( )dy η  is in-
troduced as       

( ) : v( )dy = +η kη η ,                                                      (10) 
where v( )η is an auxiliary control and will be introduced 
later. Then, the closed-loop form of ηΣ  can be written as 

( ) ( )1 1 1 1 ηv( ) ,e ′= + − + + ∆η F g k η g g η g z η&                  (11) 
Assumption 2 ensures the existence of the gain vector k 
such that 1+F g k  is Hurwitz, and guarantees the existence 
of a symmetric positive definite matrix 1P , which satisfies  

( ) ( )1 1 1 1 1
T =+ + + −F g k P P F g k Q ,                               (12) 

where 1Q  is an arbitrary symmetric positive definite ma-
trix. Using (10), the upper bound of the modeling error, 
introduced in (9), can be represented as  

0 1 1 1( , ) vc c c eβ′ ≤ + + +ηΔ z ηη ,                             (13) 

where 1 2 1c cβ = + k  .  
Theorem 1.  Consider the control law v( )η  as 
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1

v
1
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c

−
=

−
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where 1
T Tw = η P  and 0ck > . Then, the η -subsystem is 

ISS with respect to inputs e and 0c . 
Proof: Define the Lyapunov function  

1 1
1
2

TL = η P η ,                                             (15) 

where matrix 1P  is the unique positive-definite symmetric 
solution of (12). Using (11), (13) and (14), and adding and 
subtracting 22

13λ g wT  and completing of square terms, 
the time-derivative of 1L  becomes 
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where 1mq  is the smallest eigenvalue of Q1 and λ  is a suf-
ficiently large positive constant. Now select the controller 
gain ck  such that 23ck λ> . Then, by removing the nega-
tive terms from (16) it gives 

( )( ) 2 22 2 2 2 2
1 1 1 1 02 ( 1)mL q c e cβ λ λ λ− −≤ − − + + +η&  (17) 

in which λ  is selected sufficiently large such that it satis-
fies 2

1 12( / )mq β λ> .  Hence, it can be concluded from 
(17) that ηΣ is ISS with respect to e and 0c  (Jiang et al., 
1996). Moreover, ηΣ  may also be considered as input-to-
state practical stable (ISPS) with respect to input e.                   

3.2. Asymptotic stability of output tracking error 

Using (7) and defining ( ): [ ]re e e=E & L , the error dy-
namic can be expressed as 

( )( )+ L ad Ru u u
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Lu is the output of a stabilizing linear dynamic compensa-
tor, which is designed to assure the boundedness of the 
closed-loop states in the presence of modeling errors. 
 
3.2.1 Neural network-based adaptive control design 

The control term adu  in the control law (6), is included 
to approximate the modeling error ( , , )u′∆ z η . Hence, 
there exists a fixed-point problem as 

( )1 1 ( ) 1ˆ( ) , , ( , ( ) )r T
ad ad L R d du t y u t u u b y bψ − − −′= ∆ − + − + −z η m y

According to the contractive mapping theorem (Hunter 
and Nachtergaele, 2001), if the map adu ′→ ∆  is contrac-
tive over the entire input domain, then the above fixed 
point problem has a unique solution for adu . This map is 
contractive if it satisfies the following condition:   

1adu′∂∆ ∂ < .                                      (19) 

Substituting (3), (4) and (6) into (19) yields    
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This condition holds if and only if  ( ) ( )ˆ 2u u∂ ∂ ∂ ∂ <ψ ψ  
and ( ) ( )ˆ 0u u∂ ∂ ∂ ∂ >ψ ψ  which are equivalent to the 
following conditions: 

( ) ( )ˆ ˆ0.5 ,  sgn sgnu u u u∂ ∂ > ∂ ∂ ∂ ∂ = ∂ ∂ψ ψ ψ ψ  (20) 

If the conditions (20) are satisfied then  based on the input-
output data, the modeling error ( , , )u′∆ z η  can be ap-
proximated  with a bounded error ε , by a single hidden 
layer MultiLayer Perceptron (MLP) as 

( )* *T T ε′∆ = +w σ V ζ ,       with  Mεε ≤ ,                      (21) 

where Mε is an appropriate bound on ε  which is deter-
mined based on the network architecture, * mR∈w  is the 
vector containing synaptic weights of the output layer, 

* N mR ×∈V  is the matrix containing the weights of the 
hidden layer, 1[ ]T

mσ σ=σ L  is the vector function con-
taining the nonlinear function tanh( )xα  with  >0α  as 
the activation function of the hidden layer, and 

[1 ]T N
ad R= ∈ζ y u uα  is the input vector  where 
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and 1 ( ) 1r T
ps ad L R d du u u u u b y bα

− −= + = − + − m y  (Hoseini 
et al., 2009).  Moreover, it is proved that if a non-linear 
system satisfies the conditions (20), then it is unnecessary 
to use ( )adu t  as an input signal to the NN. Hence, the 
fixed point problem in the algebraic loop, which is created 
from feeding the output of NN back to its input, is elimi-
nated. 

Since ′∆  can be modeled using a MLP, the adaptive 
control term is proposed as 

( ): T T
adu = w σ V ζ ,                                                          (22) 

where w  and V  are the actual weights of their corre-
sponding ideal weights *w  and *V  which are defined as 

( )
( )

( ) ( )* * ', : arg min sup T T

, ∈Ω ∈Ω

  = − ∆ ⋅ 
  w ζ

w V ζ
w V w σ V ζ ,     (23) 

where ( ) F{ , }, M MΩ = ≤ ≤ww Vw V w V , in which 
M w  and M V  are  positive numbers and F⋅  denotes the 
Frobenius norm.                            

  In practice, the weights of the NN may be different 
from the ideal ones. The approximation error, which arises 
from the difference between (21) and (22), satisfies the 
following equality: 

( )( , , ) ( )T T T
adu u tδ′∆ − = − + +V Vz η w σ σ V ζ w σ V ζ%% ,   (24) 
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and [ ]1 1 1=diag ( ) ( )m m m∂ ∂ ∂ ∂Vσ Lσ ν ν σ ν ν  is the de-
rivative of σ  with respect to the input signals 

( 1, , )i i mν = … , in which 1[ ]T T
mν ν = V ζL ;  and m 

denotes the number of neurons in the hidden layer (Hosei-
ni and Farrokhi, 2009). 
 
 

3.2.2. Construction of SPR error dynamics 

In this section, the strictly positive realness (SPR) 
property of the closed-loop error dynamic is studied (Cal-
ise et al., 2001; Astrom and Wittenmark, 1994). Assume 
that Lu   is constructed using the following dynamic con-
troller: 
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Applying this linear controller to the system (18) implies 
the following closed-loop system: 
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The controller Lu is designed such that the following 
closed-loop transfer function is stable and minimum 
phase: 

( ) 1
0 0 0 0 0( )G s N D s −= = −c I A b .                                 (27) 

If the controller is proper, then the relative degree of ( )G s  
is r.  Now define the filtered error signal fe  as 

( )( )f ad ad ade G s e N D e= = ,                                        (28) 

where ( )adG s  is selected such that (0) 0adG ≠  and 
deg( ) deg( )ad adD N= . The error signal (28) is used to 
adapt the NN weights. Using (26), (27) and (28), the 
closed-loop transfer function of the system can be written 
as 

 ( )( )0

0

( ) ( , ) ( )ad
f ad R

ad

N Ne s u u u s
D D

′= ∆ − −x                     (29) 

As it is shown in the next section, for realization of the 
adaptation rule of the NN weights (i.e. using only the 
available data), the transfer function 0 0ad adN N D D must 
be strictly positive real (SPR). When the relative degree of 

0 0ad adN N D D  is equal to one (i.e. r =1), this transfer 
function can be made SPR by a proper selection 
of ( )adN s . However, when 1r > , it cannot be made SPR 
(Narendra and Annaswamy, 1989). To achieve a SPR 
transfer function for 1r > , a stable low pass filter ( )T s  is 
introduced such that 1 deg( ( )) .r T s r− ≤ ≤  Thus, the new 
filtered error dynamics is      

( )( )1
ad( ) ( ) ( ) ( , ) ( )f T Re s G s T s u u u s− ′= ∆ − −x ,            (30) 

where 0 0( ) ( ) /( )T ad adG s N N T s D D= . 
Since ( )TG s  is a stable transfer function, its zeros 

(roots of adN and ( )T s ) can be easily placed to make it 
SPR. Moreover, it is important to note that ( )T s  is de-
signed such that the step response of 1( )T s−  has no over-
shoot and 1( ) 1T s− ≤ . Hence, the state space model of the 
closed-loop error dynamics given in (30) can be repre-
sented as 

( )( )1( ) ( , , )cl cl ad R
T

f cl

T s u u u
e

−  ′= + ∆ − −  
=

ξ A ξ b z η
c ξ

&
           (31) 



According to the Kalman-Yakubovich lemma, the strictly 
positive realness of ( )TG s  assures the existence of a 
symmetric positive definite matrix 2P  which satisfies  

2 2 2

2

T
cl cl

cl cl

= + −
= 

A P P A Q
P b c

                                                   (32) 

where 2 2 0T= >Q Q . 

3.3. Stability analysis 

In this section, first, the asymptotic stability of the 
tracking error is proved and then the stability of the overall 
system using the small gain theorem is presented.  

Substituting (24) into (31), the closed-loop error dy-
namic can be represented as 

( )( )1 1 ( )T T T T
cl cl f RfT T t u− −= + − + + −V Vξ A ξ b w σ σ V ζ w σ V ζ& %% δ

where 1( ) ( ) ( )f t T s tδ δ−=  and 1( ) ( ) ( )Rf Ru t T s u t−= . 

Now define : T= − Vψ σ σ V ζ  and : T= VΨ ζ w σ , and 
consider the discontinues control signal 

( )sgnR fu eχ ϕ= ,                                      (33) 

where ϕ  is an adaptive gain and χ  is a function of the 
NN weights and input vector ζ . Using the fact 

tr( )T T T T=V Vw σ V ζ V ζw σ% % , the closed-loop error dynamics 
can be written as 

( )1 1

1

( ) tr ( ) ( )

( ) sgn( )

T T
cl cl f

f

T s T s t

T s e

δ

χϕ

− −

−

= + + +
− 

ξ A ξ b w ψ V Ψ& %%
    (34) 

The NN weights V% and w% , and sgn( )feϕ are time-
varying signals. Hence, the transfer function operator in 
(34) is not commutable. Now consider the following error 
terms:  
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for which the following bounds can be assumed 

3 4 5, ,c c cϕδ δ δ≤ ≤ ≤w V                                 (36) 

where 3 4 5, andc c c  are positive numbers. Substituting 
(35) into (34) yields 

1tr( ) sgn( )

                    ,

T
cl cl f f f

f

e T

ϕ

ϕ χ

δ δ δ δ

−= + + −
+ + + − w V
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       (37) 

where 1( )f T s−=ψ ψ and 1( )f T s−=Ψ Ψ  
In order to show that the error dynamics (37) is asymp-

totically stable, the following lemma is needed. 
 

 

Lemma 1. The following inequality holds: 

( ) 1
1 ( )f T s−+ + − ≤w V ϕδ δ δ δ ϕ µ χ ,                          (38) 

where 

( ){ }1 V Vmax 2 , 2 , ,M wmM c M M M Mϕ ε α α α= + +w w ,  

with 3
1i ic c== ∑ ,0 1µ< <  and ( )( )F4 1 1 .χ = + + +ζ w V   

Proof: Using (25) and (36), and considering the condition 
1( ) 1T s− ≤ ,  it is obtained 

( )

( )

V

3 4 5F

1 F

1

2
     

1
                               = .

*
f M
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mM M
M c c c

ϕδ δ δ δ ε α
α

ϕ
ϕ χ

+ + − ≤ + + −

+ − + + +

≤ + + +

w V w

w

w w ζ
V V ζ

ζ w ζ V ζ

Since the step response of 1( )T s−  has no overshoot and 
1( ) 1T s− ≤  and χ  is a positive signal, then by selecting 

suitable initials for filter states, there exists a 0 1µ< <  
such that 1( )T s−≤µχ χ .  Consequently,  

( ) 1
1 ( ) .f T sϕδ δ δ δ ϕ µ χ−+ + − ≤w V    

Remark 1. Note that a suitable linear controller uL could 
stabilize the system (Hoseini et al., 2009). Therefore, the 
closed-loop system is stable even via only an appropriate 
linear controller. Hence, before the adaptive control parts 
(NN and uR) are included to the control law, it may be as-
sumed that the state variables are bounded. These control 
parts are included to obtain a lower error bound and to en-
sure the closed-loop system is robust against changes in 
the system parameters. Hence, even before considering the 
adaptive control parts, it may be assumed that ( )′∆ ⋅  is 
bounded. Therefore, the ideal weights; ( * * *, ,V w ϕ ) are 
bounded, and initializing ( , ,V w ϕ ) to small values, im-
plies the boundedness of ( , ,V w ϕ% %% ). Therefore, the 
bounds defined in (36) are always valid.                           

Theorem 2. Considering the discontinuous control (33) 
and selecting the adaptation laws for the NN weights and 
the gain of the robustifying termϕ  as 

( )1, , ,f f f f fe e e Tϕγ γ ϕ γ χ−= = =w Vw ψ V Ψ& &&      (39) 

Then the closed-loop tracking error (37) is asymptotically 
stable and the weights of the NN remain bounded.  

Proof: Consider the Lyapunov function  
2221 1 1

2 2 F: 0.5 0.5 0.5 0.5T
w VL ϕγ γ γ ϕ− − −= + + +ξ P ξ w V% %%  (40) 

where P2 is the unique symmetric positive-definite solu-
tion of (32) and *ϕ ϕ ϕ= −%  with *ϕ as an estimate of ϕ . 
Moreover, assume that *w  and *V are the ideal constant 
weights defined in (23); then, from (25) −V = V&& %  and 

−w = w&& % . Using (37), the time-derivative of L becomes 

( ) ( )
2 1

2 2 2
1 1 1

0.5 sgn( )
tr tr ,

[
]

T T
m cl f f
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f f w V
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where 2mq is the smallest eigenvalue of 2Q . Substituting 

T
f cle = ξ Pb , obtained from (31) and (32), and using  

Lemma 1, yield  

( ) ( )( ) 21 1
2 2

1 * 1 1

+tr 0.5
sgn( ) ( ) ( ) .

T T
f f w f f V m

f f f

L e e q
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Using the adaptation laws (38), it is followed that 
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2 * 1 1 1
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2
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ξ
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& % &
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which shows that the closed-loop tracking error is asymp-
totically stable. Moreover, since 2L  is a positive function 



and 2 0L ≤& , one can conclude that ξ , V% , w%  and ϕ%  
are bounded. In addition, (23) shows that *V  and *w are 
also bounded. Therefore, according to (25), V  and w  
remain bounded. Moreover, integrating from (41) gives 

( )
2

2
1

2 0 20
2 ( ) ( ) .( )

m t tdt q L t L tt
∞ −

= =∞≤ −∫ ξ                     (42) 

The right-hand side of (42) is bounded, therefore, accord-
ing to Barbalet’s lemma 2lim 0

t →∞
=ξ . Since T

f cle = c ξ , 
then lim ( ) 0f

t
e t

→∞
= . Now applying the final value theorem 

and using (28) yield 

ad0 0
lim ( ) lim ( ) ( ) 0fs s

s e s s G s e s
→ →

= = .                                 (43) 

Since ad (0) 0G ≠ , one can conclude that 0lim ( ) 0s s e s→ =  
and hence, lim ( ) 0

t
e t

→∞
= .                                                    

Now based on the results in Karagiannis et al. (2005), it 
can be concluded that the interconnected systems (7) and 
(8) are ISS with respect to 0c . Therefore, the error trajecto-
ries are ultimately bounded. Moreover, since in the system 
(1), ( , ) 0ν =0 0 , the bound defined on ( , )′∆η z η  may be satis-
fied even with 0 0c = .  In this case, the asymptotic stability of 
the overall system can be achieved.   

4.  Observer-based output feedback stabilization 

In this section, the assumption of the availability of the in-
ternal dynamics is relaxed by designing an error observer.  
Moreover, a suitable reference signal is designed to com-
pensate the modeling error of internal dynamics or the 
unmatched uncertainty. 

Consider the system dynamics given in (5) and define 
the pseudo control as in (6).  Then, the error dynamics (7)-
(8) can now be rewritten as  

( )

( )
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1
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1 1

1 1
,
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,                     (44) 

where  * ( 1)
1 2: T r

d d d r dy g y g y g y −= = + + +g y & L . 

Assumption 3. The signal dy  and its derivatives are 
bounded. Moreover, the unmatched uncertainty ( , )∆η z η  
is bounded with a constant and conic sector bound. That is  

* *
0 1 2

( ) *
3

0

( , )

,
r

i
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i

c c c

y c
=

∆ ≤ + +

≤∑
η z η z η

                                       (45) 

where *
0c , *

2c  and *
3c  are unknown constants and 1c  is a 

known positive constant such that 1 1c < .  

Note that here the bound on ( , )∆η z η  as defined in 
(45) is less restrictive than the one given in (9) in Assump-
tion 2. 

Let : [ , ]T T
e

T= eξ η . Then the error dynamics of the 
nonlinear system (44) can be represented as 
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ηL ad Re e
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Since the system is non-minimum phase, the matrix A  has at 
least one eigenvalue with positive real part. Therefore, the 
linear control Lu  is first designed to stabilize the linearized 
system. 

4.1. Linear control design 

Since ( , )A b  is a controllable pair, the following alge-
braic Riccati equation:  
 3 3 3 3 32 0T T+ + − =P A A P Q P bb P ,                      (47) 

where 3Q  is a symmetric positive-definite matrix, has a 
unique symmetric positive-definite solution 3P . The opti-
mal linear control is 

1
ˆ

L ecu ρ= − = −k ξ ,                                         (48) 

where ξ̂  denotes estimation of eξ and the vector gain ck is 

3
T
c =k P b .                                                                       (49) 

Substituting (49) into (47) gives 

( ) ( )3 3 3 0T
c c− + − + =A bk P P A bk Q .                        (50) 

Hence, c−A bk  is a stable matrix and Lu  stabilizes the sys-
tem in the presence of uncertainties (Hoseini et al., 2009).  

4.2.   Adaptive control term 

The neuro-adaptive law is used to cancel out the 
matched uncertainty ∆ .  The adaptation rules for the 
weights of NN in this case are defined as follows: 

( )( )
( )

1

1

T
w

T
V

k

k

= − − 


= − 

w V

V V

w σ σ V ζ w

V ζw σ V

&
&

γ ρ

γ ρ
,                      (51) 

where 1ρ  is the same as in (48), γ w  and γ V  are learning 
coefficients, and kw  and kV  are σ -modification gains. 

Remark 2. As it is shown in Section 4.5, the stability 
analysis relies on an extension of the Lyapunov theory. 
The derivate of this Lyapunov function is negative outside 
a compact set. In this case, to avoid any persistent excita-
tion condition on the NN inputs and to guarantee the 
boundedness of w%  and V% , the σ -modification terms are 
considered in the adaptation rules (Ioannou and Koko-
tovic, 1983; Lewis et al., 1996; Yesildirek and Lewis, 
1995).  

Using Lemmas 1 and the discussion in Section 3.2.1, 
the approximation error of the NN can be bounded as 

*δ ϕ χ≤ , where χ  is the same as defined in (38) and 

  { }*
1 V Vmax 2 ,2 , , .M wmM M M M Mϕ ε α α α= + w w  

To compensate the NN approximation error, the  following 
adaptive robustifying control term is added to the control 
law  



( )1Ru signχ ϕ ρ= ,                     (52) 

with the following adaptation rule 

1ϕϕ γ χ ρ=& ,                                                                  (53) 

where  ϕγ  is the learning coefficient.  Using (21), (22), 
(23) and m≤σ , the following conservative upper 
bound of the approximation error is obtained 

( ) ( )
( ) ( )
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1
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1

( , , )

                 
                 2 .
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≤ + +
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z η w σ V ζ w σ V ζ

w σ V ζ w σ V ζ
w σ w σ

(54)  

4.3. Observer design 

For realization of weight adaptation laws, given in (51) 
and (53), (i.e. dependency only on the measurable system 
output), the following linear state estimator is proposed 

( )ˆ ˆ ˆ
e e eL ou e= + + −A bξ k cξ ξ& ,                                (55) 

where b and c are the same as in (46) and the observer 
gain 1[ ]T

no k k=k L  is selected such that o−A k c  is 
stable. Moreover, the stability of o−A k c  assures the exis-
tence of the symmetric positive definite solution 4P  of the 
following algebraic Riccati equation:  

( ) ( ) 1
4 4 4 3 3 3

T T T
o o o o

−− + − = − −P A k c A k c P Q c k P Q P k c (56)  
where 4Q  is a symmetric positive definite matrix. This 
observer is incorporated to the nonlinear system (5).   

Define the state estimation error as ˆ:e e e= −ξξ ξ%  and 

:
e

TT
T

e
 =  ξE ξξ %                                                             (57) 

Then, the augmented system dynamics can be described as 
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     (58) 

where : ad Ru uβ = ∆ − −  and *: yγ = + ∆η . Therefore, the 
augmented system dynamics can be described as 

( )0 0 0 1 1
ˆ

e e L c eu β γ β γ= + + + + − −ξ ξE A E b k q b qξ& .      (59)  

Also the available output signals are introduced as 

[ ]1

2 3 3 3

ˆ
ˆ .

c c ce

e
T T T

ρ

ρ

= =

 = =  

ξ

ξ

k k k E
q P q P q P E
ξ
ξ

                                  (60) 

4.4. Reference signal construction  

The reference signal dy  is designed to cancel out the 
unmatched uncertainty ∆η . Using the error : de y y= − , 
the upper bound of the modeling error, defined in (45), can 
be represented as 

( )* ( ) *
0 1 2( , ) r

d dc c y c≤ + + + +ηΔ z η e y η                (61) 

where *
0c  and *

2c  are estimates of 0c  and 2c , respectively.   
On the other hand, from (44) and (45) the following 
bounds can be derived: 
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Then, 
1

( ) * ( ) ( ) * *
1 3

0 0

r r
r i i

d d i d d
i i

y y g y y y c p
−

+
= =

+ ≤ − + ≤ +∑ ∑y ,      (62) 

where 1p ≤  is a nonnegative real number and *
3c  is de-

fined in (45). Substituting (62) into (61) yields 
* * *
4 1 5( , ) ec c y c≤ + +ηΔ z η ξ , 

where * *
5 1 2c c c= +  and  * * *

4 0 1 3c c c c p= + .  Now, define 
* **

4 5: [ ]Tc c=λ ; then,  

* *
1( , ) 1

TT
ec y≤ +   ηΔ z η λ ξ                             (63) 

Let λ be an estimate of the unknown parameter *λ .  An 
adaptive reference signal is proposed as 

( )*
2

1

11 1 tanh
( ) ( ) 1

ˆ T
T

d y

e
y y

D s D s c
ρ µ

  
  = = − − 
 

λ ξ
      (64) 

with the following adaptation rule: 

[ ]4 5 21 ˆ T

e
Tc c λ ρ = = Γ  λ ξ& & & ,                              (65) 

where yµ  is a positive constant, λΓ  is the learning coeffi-
cient matrix and 

1 2
1 1( ) r r

r rD s g s g s g− −
−= + + +L  

is a Hurwitz polynomial in which ( 1, , )ig i r= …  were 
defined in (2).  

Remark 3. In practice, small positive numbers can be se-
lected as initial values for 4 5[ ]c c . Then, according to 
(65) these gains increase and approach to * *

4 5[ ]c c .  
Hence, always *

4 4c c≤ . Moreover, using the approxima-
tion error *yγ = + ∆η , and equations (63) and (64), the 
following bound can be derived: 

( ) ( )* * *
4 5 51 1e ec d c d c dγ ≤ + + + +ξ ξ%  

where 1 1(1 ) (1 )d c c= + − . Substituting (57) into the 
above equation yields  

0 1 e
γ α α≤ + ξE                                                             

(66) 
where ( )*

0 4 1c dα = +  and ( )*
1 5 1 2c dα = + . 

 
4.5.    Stability analysis  

In this section, the ultimately boundedness of the error tra-
jectories , andξE w V%%   are shown using the Lyapunov 
stability approach.  
 

Definition 1.  Let ∆Ω  be the compact set in which the NN 
approximates ∆ , and r∆Ω  be the largest hypersphere 

within the error space [ , ,|| || ]a F= ξE E w V%% defined as 

{ }: a ar r∆∆
Ω = ≤E E ,                                                 (67) 



where r∆  is a positive number, such that for every 
a r∆∈ ΩE  there exists ( ), , u ∆∈ Ωz η . 

Assumption 4. There exists a positive number maxr  which 
satisfies the following inequality  

max m Mr S S r∆< ,                                                        (68) 

where mS  and MS  are the minimum and the maximum 
eigenvalues of the following matrix, respectively: 
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3 3 4

 =  + 
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Theorem 3. Consider the linear controller (48), the neu-
ro-adaptive controller in (22) with adaptation rules (51), 
the robustifying controller (52) with adaptation rule (53) 
and the reference signal dy  as defined in (64). Then, if 
Assumptions 3 and 4  hold  and  Ea(0) belongs to  the 
compact set Br r∆ ∆⊂ Ω , the  errors 

eξ
E , w%  and V%  in the 

closed-loop system are uniformly ultimately bounded. 

Proof. Consider the Lyapunov function  
222 1
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where *:ϕ ϕ ϕ= −%  and *:= −λ λ λ% , in which *ϕ  and *λ  
are the ideal gains of their corresponding estimated values 
ϕ  and λ , respectively. Using (57), this Lyapunov func-
tion can be represented as 
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Recall that = −w w&& %  and = −V V&& % .  Using (59), the time-
derivative of the Lyapunov function (69) becomes 
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Using(49), (58) and (60), it is obtained  
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Then using (48), (50), (56) and (70), and substituting  

( ) ( )trT T T T
Ruβ δ= − + + −w σ σV ζ V ζw σ%% & & , after some 

mathematical manipulations L&  becomes  
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where  
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Since 3Q  and 4Q  are symmetric positive-definite matri-
ces, Q  is also a symmetric positive-definite matrix.  

Now, from the bounds (63), (66),  *δ ϕ χ≤ , the robus-
tifying control term (52) and the reference signal (64), and 
considering the fact that tanh( / )x xx x x kµ µ− ≤ − +  
with 0.2785k = , the time derivative of L  satisfies the fol-
lowing inequality: 
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where minq  denotes the minimum eigenvalue of Q and 

: 2 Mw MM mM Uβ ε= + +  is the upper bound of β  in 

which MU is a positive constant such R Mu U≤ . Note that 
because of the universal approximation property of NNs, 
the approximation error is bounded. Hence, it is always 
possible to find such a positive constant. 

Next, let 1: (1 )yk cε µ= − . Using the inequalities 
2 1

ˆ
eρ ≤ Pq ξ , ˆ 2e ς≤ξ E  and 

ee ς≤ξ E% , and ap-
plying the adaptation rules (51)  
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Now the adaptation rules (53) and (65), and completing 
the square terms yield 

( ) ( )
2 221 1

eE w VL A k k Rς≤ − − − − − +E w V& %% ,         (71) 

where 
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Select 1k >w  and 1k >V  and let the constants 1α  and *
5c   

be such that the following condition is satisfied 

( )*
min 1 5 12 2 2q cα> + +Pq .                                       (73) 

Define a compact set around the origin as 
{ }max: a a rΩ = ≤E E , where  

{ }max max , ( 1), ( 1)Er R A R k R k= − −w V . 



As Fig. 1 shows, 0L ≤&   if the errors are the outside of 
the compact set Ω . Next, consider the Lyapunov function 
(69), which can alternatively be written as 

T
a aL Lλϕ= +E SE , with 21 10.5 0.5 TLλϕ ϕ λγ ϕ− −= + Γλ λ% %%  and  

( )2 2

e e em MS L L S Lλϕ λϕ+ ≤ ≤ +ξ ξ ξE E E , 

 where mS  and MS  are the smallest and the largest eigen-
values of S, respectively. Let ML  be the maximum value 
of the Lyapunov function L on the boundary of 

2
max,  i.e. M ML S rΩ =  and mL  be its minimum value on the 

boundary of 2, i.e. m mr L S r∆∆Ω = . Therefore, if M mL L>  
then the error trajectory initialized in the shadow area may 
leave r∆Ω . See Fig. 2(a).  On the other hand, if M mL L<  
then Assumption 4 holds, and therefore, r∆Ω ⊂ Ω .  See 
Fig. 2(b). Moreover, consider the compact set 

{ }B : ( )r a r a mL L∆ ∆= ∈ Ω ≤E E  as depicted in Fig. 2(c).  
One can conclude that if an error trajectory starts form a 
point inside Br∆  (i.e. (0) Ba r∆∈E ), then according to the 
standard Lyapunov theorem extension, the error trajectory 

( )a tE  is ultimately bounded (Lewis et al. 1996; Yesildirek 
and Lewis, 1995; Ge and Zhang, 2003).         

The block diagram of the closed-loop system is de-
picted in Fig. 3.                                      

5. Example 

A TORA model is considered to illustrate the performance 
of the proposed controllers (Karagiannis et al., 2005; Lee, 
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Fig. 2. Semi-global ultimately error boundedness of the proposed me-

thod 

Fig. 3. Block diagram of the proposed controller 

 
Fig. 4. A translational oscillator with a rotational actuator (TORA) 

2004), see Fig. 4. The system dynamics is governed by the 
following differential equations:

 2

2

( ) ( cos sin )
( ) cos
M m x m l k x
J m l m l x

θ θ θ θ

θ θ τ

+ + − = −

+ + =

&& &&&
&& &&

 
where θ  is the angle of rotation, x is the translational dis-
placement, and τ  is the control torque. The positive con-
stants k, l, J, M and m denote the spring stiffness, the radius of 
rotation, the moment of inertia, the mass of the cart, and the 
eccentric mass, respectively. Define the states and the input 
variables as 

( ) ( )1 2

1 2

sin , cos

, , .

x m l x m lM + m M + m
z z u
η θ η θ θ

θ θ τ

= + = +

= = =

&&
&

In these coordinates, the system can be described in the fol-
lowing normal form: 

( ) (
)

1 2
1 2

2 1 1 1 1 1 2 1 1
2
2 1 1

1 2

2 2 1 3 1

( ) cos sin cos
       sin cos +( )

sin

2 2

z z
z z ka z a a z z

m l z z z M + m u

a a z

φ η

η η
η η

−

=
 = − −
 =
 = − +

&
&

&
&

 

where 2 2 2 2
1( ) ( )( ) cos ,z M m J m l m lφ θ= + + −  1 ,=a ml  

( ) 2
2 3and ( ) .= + = +a k M m a k ml M m

 The output of the system is 1y z= . Therefore, the zero 
dynamics of this system is 

1 2

2 2 1.a
η η
η η

=
 = −

&
&
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Since 2 0a > ,  the zero dynamics is unstable and the sys-
tem is non-minimum phase. The following linear model of 
the TORA system is available: 

( ) ( ) ( )
1 2

1 1 12
2 1 2 1 1 1

1 2

2 2 1 3 1

ˆˆ ˆ ˆˆ ˆ ˆ ˆ(0) (0) ( ) (0)

ˆ ˆ ,

z z

z a a z ka M + m u

a a z

φ φ η φ
η η
η η

− − −

=

 = − + +


=
 = − +

&

&
&
&

 
where ˆ ,m  ˆ,k  ˆ,J  1â , 2â , 3â  and φ̂  are the estimates of 
the parameters ,m  ,k  ,J  1a , 2a , 3a  and φ  respectively. 

Note that Assumption 1 is satisfied; that is 

( ) 1
1( , , ) ( ) ( ) 0f z u u M + m zη φ −∂ ∂ = > .

 Also consider the best available approximation of ψ  as 
ˆ psu cuψ = = , where c should be selected such that condi-

tions (20) hold; i.e. 

1
1

ˆ( ) (0)0.5 0
ˆ( ) ( ) z

M + mc z
M + m z

φ
φ

≥ > ∀ ∈ Ω . 

To ensure that this condition holds for ˆ 2m m< and 
ˆ 2J J< , it is assumed that 1c = . For comparison, simula-

tions have been carried out using the same parameters and 
initial conditions as in Karagiannis et al.  (2005): 
J = 0.0002175 kg/m2, M = 1.3608 kg, m = 0.096 kg,  
l = 0.0592 m, and k = 186.3 N/m, 2(0) 0 rad / secz = , 

1(0) 0.025 mη = , 2(0) 0 m / sec.η = , 1(0) 0 radz = .  
The procedure of the control design is as follows: First the 
system is stabilized assuming that the internal dynamics 
are available according to the method proposed in Section 
3. The reference signal is designed using the following pa-
rameters [ 234 0.67]= −k , 0.12ck = . The NN is an MLP 
and comprises of 10 neurons in one hidden layer with tan-
gent hyperbolic as the activation functions, and the 
weights are initialized randomly using small numbers. The 
input vector to the NN is 

[1, ( ), ( ), ( 2 ), ( 3 ), ( ), ( 2 )]T
dd d d dy t y t T y t T y t T u t T u t T= − − − − −ξ

and the learning coefficients are 0.03γ γ= =w V . 

Simulations are first performed using 0dy = . As Fig. 5 
shows, the system states oscillate and converge very slow-
ly; however, when the desired reference signal is applied 
to the system, the states converge faster.  

Simulations are then carried out using the error ob-
server proposed in Section 4. The controller and observer 
gains are 

[ ]4.6, 1, 298.6, 6.9c = − − −k , [ ] 32, 594.2, 2.14, 38.4o = −k . 
The learning coefficients are selected as 3γ γ= =w V , 

2ϕγ = , diag[0.05 1]λΓ = , and 1.2k k= =w V . The re-
sults are depicted in Figs. 6–8. First, only the proposed 
combined control law has been used without the un-
matched uncertainty approximation (i.e. 0dy = ). 

Then, the proposed dy  is employed (See Fig. 6). Note 
that when the unmatched uncertainty is compensated by 

dy  the responses converge faster. Fig. 7 shows the com-
parison of the simulation results between the proposed ap-
proach and the backstepping-based controller proposed by 
Karagiannis et al. (2005). Note that the convergence rate 
of the proposed approach is faster. Fig. 8 presents the ap-
proximation of the matched uncertainty ∆  using ad Ru u+ , 

the normalized norm of adaptive weights and the state es-
timation errors.  
 
6.  Conclusions 

In this paper, an adaptive control method for a class of 
non-minimum phase nonlinear systems has been devel-
oped. First, stabilization problem of the system was con-
sidered assuming that the internal dynamics are available. 
Theses dynamics were applied to construct the reference 
signal, which guarantees the input to state stability of the 
internal dynamics. Then the assumption availability of the 
internal dynamics was removed by designing a suitable 
linear error observer. Simulation results show good per-
formance of the proposed methods in comparison with 
other traditional methods such as the backstepping me-
thod. 
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Fig. 5. Response of the TORA system, dashed line: without the reference 

signal ( 0dy = ); solid line: with the reference signal. 
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Fig. 6. Response of the TORA system, dashed line: without unmatched 
uncertainty compensation ( 0dy = ); solid line: with unmatched uncer-

tainty cancellation using the proposed dy . 
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Fig. 7.  Response of the TORA system without parameters uncertainties; 
Solid line: the proposed method; dashed line: the backstepping controller. 

 



 

0 1 2 3 4 5 6 7 8 9 10
-0.02

0

0.02

 

 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

N
or

m
 o

f w
ei

gh
t

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

                                  time (sec.)

Es
tim

at
io

n 
er

ro
r

∆
u

ad
+u

R

φ

c5

c4||V|| ||w||

 
Fig.8.  The closed-loop signals of the TORA system: (a) Matched uncer-
tainty cancellation;  (b) Normalized norm of weights; (c) States estima-

tion error 
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