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This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free 
Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the 
additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints 
friction, and external slow-varying forces acting on the biped robots. In contrary to the 
slow-varying disturbances, handling sudden pushing disturbances acting on the biped robots 
is much more complicated and using the NDO doesn’t guarantee the biped walking 
stability. In order to reject these kinds of disturbances, the motion controller must be able to 
make suitable decisions for quick changing of the gait length or the walking speed. 
However, the gait length change is not possible while tracking fixed predefined joint 
trajectories. Hence, in this paper the NMPC is designed in such a way that it has the ability 
to change the gait length appropriately. In addition, some schemes will be proposed to 
reduce the computation time of the NMPC. Simulating results show good performance of 
the proposed method in trajectory-free walking of biped robots as well as disturbance 
rejection. 

 

1. Introduction 

Development of legged locomotion systems has recently 
received an increasing attention due to their higher mobility 
than conventional wheeled vehicles. Legs are adapted to 
cluttered environments allowing the machine to stride over 
obstacles and limiting the damages to the environment thanks 
to their small supporting surface. An important branch of the 
legged robots are the biped robots, which are based on the 
human oriented facilities. The biped robots are expected to 
imitate human behaviors and locomotion abilities, e.g. getting 
up and down the stairs and ladders and passing uneven and 
rough grounds. Some of these demands, which are not 
achievable by the wheeled robots, emphasize more on the use 
of the biped robots. These new demands together with the new 
concepts in the field of biped robots (i.e. providing stable 
walking and balance to the biped robot) demand applying new 
and well adapted motion control approaches. Practically, there 
may be some uncertainties in the biped robot parameters 
and/or parameter variations in the biped dynamics. Moreover, 
there are some unmodeled dynamics in the biped robot model.  
In addition, joints friction and external slow varying forces 

acting on the biped robots usually exist. Hence, an 
unavoidable property of the biped motion controller that has to 
be concerned with is its robustness. Recently, some robust 
biped motion control methods have been proposed by 
researchers. For instance, in [1] the controller is designed 
based on constructing an error vector between the robot 
measurable states and the desired states then forcing the 
gradient of this error vector to be negative via the use of a 
suitable Lyapunov function. The controller is robust in the 
sense that it accommodates unstructured uncertainties inherent 
in robotics. Reference [2] has suggested a robust controller 
with modeling uncertainties and external disturbances for 
stable dynamic walking of biped robots. In [3], the finite-time 
robust trajectory tracking control strategy is designed to make 
the states of the system reach the tracking target point in finite 
time. This control strategy is based on the theory of Lyapunov 
stability and the characteristics of the system. This control 
strategy can make the error be bounded in terminal value 
under the condition of external uncertain disturbances, 
otherwise be zero. Robust control methods, especially in the 
nonlinear systems, have usually complicated theories and need 
some knowledge about the uncertainty structure, such as the 
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upper bound of disturbances. One of the indirect methods to 
robust a controller that has received more attention during the 
past years, is the Disturbance Observer Based Control 
(DOBC). The Disturbance Observer (DO) is a robust 
compensator proposed by Ohnishi in 1987 [4]. The main idea 
behind developing a disturbance observer can be stated as: 
First, the DO estimates the equivalent disturbance and then the 
estimated disturbance is fed back as a cancellation signal and 
makes the whole system to behave like the nominal system. 
Since the DOBC scheme has simple structure and powerful 
performances, it is widely used for improving disturbance 
rejection performance and robustness in various mechanical 
servo systems [5-7]. One of the advantages of DOBC is that 
this method doesn’t need upper norm band of the uncertainty. 
The other advantage is that it helps to robust control methods 
which are not robust by their own. Hence, DOBC can be used 
to construct a controller for the bipeds, which provide 
robustness to the controller. Based on this view, selecting the 
motion control method may be a challenging decision.  
Noticing at the previously mentioned biped robust controllers, 
it’s observed that a common property of these approaches is 
that they all try to reduce the tracking error of the trajectory 
produced by the gait planner block; whereas comparing by 
human walking nature, defining a trajectory and consuming 
more efforts to track it may not be suitable. The biped robot 
may have a normal and acceptable walk even if there are some 
errors in the trajectory tracking of the joints. On the other 
hand, a worthy trajectory has to consider the biped physical 
constraints together with actuators capability while 
minimizing the energy consumption. Based on these ideas, [8] 
has proposed a trajectory free motion control of bipeds based 
on the Nonlinear Model Predictive Control (NMPC). This 
paper has considered only the Single Support Phase (SSP) of 
the robot. In [9] the controller is improved and the Double 
Support Phase (DSP) has been also added. Also [10] has used 
the same method while it has claimed a real-time algorithm. It 
should be mentioned that all previous papers are model based 
methods, which have tried to use the advantage of omitting the 
trajectory generation phase in the biped motion control. In 
addition to low robust characteristics, a common problem in 
these papers is that the gait length is kept fixed. Letting the 
NMPC to change the gait length causes more flexibility and 
also improves the ability of the controller to maintain stability 
in presence of sudden disturbances.  
The aim of this paper is to propose a robust biped motion 
control with less limitation as compared to the previously 
proposed methods. Thus a robust trajectory free nonlinear 
model predictive control based on disturbance observer is 
proposed in this paper. Moreover, the NMPC is designed in 
such a way that the gait length may be changed in presence of 
sudden disturbances to maintain the biped balance. In 
addition, some schemes will be proposed to reduce the 
computational time of the NMPC. 

This paper is organized as follows. Section II presents 
dynamics of the 5-link planar biped robot in the SSP and DSP, 
and the impact effect. Section III provides the proposed 
NMPC strategy by defining an appropriate objective function 
and the constraints. In Section IV, the NDO is added to the 

control loop to insure the controller robustness. Section V 
shows simulation results. Section VI concludes this paper. 

 
Fig. 1. Planar five link biped robot model [11]. 

2. Five-Link Biped Robot Dynamics 

In this paper, the control of a planar biped robot with five links 
is considered. This biped contains a torso and two identical 
lower limbs with each limb having a thigh and a shank (Fig. 
1). Moreover, the biped has two hip joints, two knee joints, 
and two ankles at tips of the lower limbs. There is an actuator 
located at each joint; all joints are considered rotating in the 
sagittal plane. In addition, in this model, feet have no mass. 
This assumption simplifies the biped model while does not 
reduce that much efficiency of the biped dynamics [11]. 
Although the dynamics of the feet are neglected, it is assumed 
that the biped can apply torque at the ankles. Each gait 
consists of two successive dynamic: 1) The single support 
phase (SSP), where a stance limb is in contact with ground 
and the other limb swings from rear to front, and 2) The 
double support phase (DSP), where both limbs are on the 
ground while the body can slightly move forward. The impact 
happens in an infinitesimal period of time as the swing limb 
collides with the ground and joint velocities are subjected to a 
sudden jump resulting from this impact event. During the 
DSP, a torque is applied at leading ankle whereas the rear 
ankle does not possess a torque but can rotate through the knee 
torque and the effect of gravity. The friction between the feet 
and the ground is assumed sufficient to prevent slippage 
during walking graphic [11]. 

A. Single Support Phase 
The biped locomotion with single foot support can be 
considered as an open-loop kinematic chain model [12]. The 
dynamic equations to describe the biped SSP can be derived 
using the standard procedure of Lagrangian formulation as 

( ) ( , ) ( )+ + =D θ θ H θ θ θ G θ Tɺɺ ɺ ɺ      (1)                                 

where ( )D θ  is a 5 5×  positive definite and symmetric 
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matrix of inertia, ( )H θ is a 5 5×  matrix related to the 

centrifugal and Coriolis terms, ( )G θ  is a 5 1×  vector of 

gravity terms, θ , θɺ , θ
ɺɺ , and T  are 5 1×  vectors of 

generalized coordinates, velocities, acceleration and torques, 
respectively [11]. 

B. Double Support Phase 

The DSP begins with the front limb touching the ground and 
ends with the rear limb taking off the ground. As both of the 
contact points between the lower limbs and the ground are 
fixed during the DSP, there exists a set of holonomic 
constraints as 

( ) 0e b

e b

x x L

y y

− − 
= = − 

Φ θ   (2)                                

 

where L is the step length and bx  and ex  are the stance foot 

and the swing tip position, respectively. Hence, the Lagrangian 
equation of motion during the DSP is 

 T( ) ( ) ( ) ( )+ + = +D θ θ H θ,θ θ G θ J θ λ Tɺɺ ɺ ɺ   (3)                                         

where λ  is the vector of Lagrange multipliers and 

= ∂ ∂J Φ θ  is the 2 5×  Jacobian matrix. As a dynamic 

system under holonomic constraint, a set of independent 
generalized coordinate can be found to formulate the dynamic 
equations, which describe the constraint system without using 
the terms of constraint forces [13]. Let the independent 

generalized coordinate be ( )T

h h 3x y θ=p , where 

( )h hx y  is the hip position. With this new coordinates, (3) 

can be written as 

( )) )= + −p(θ Bp(θ C T Nɺɺ   (4) 

where B  is a 3 3×  matrix, C  is a 3 5×  matrix and N  is a 

5 1×  vector [11].  

C. Impact Effect 

At the end of the SSP, the tip of the swing limb contacts the 
ground surface with an impact. The joint velocities are 
subjected to a sudden jump resulting from this impact event. 
The vertical velocity of the tip of the swing limb becomes zero 
immediately after the impact due to the ground collision 

( )1

impact

−+ − − − − = + − 
1 T 1 T

θ θ D J JD J Jθɺ ɺ ɺ   (5) 

where impact
+
θɺ  and −

θɺ  are 5 1×  vectors of generalized 

velocities immediately after and before the impact, 
respectively [11]. 

3. NMPC CONTROL APPROACH 

The ordinary motion control methods in robotics are 
comprised of two phases: 1) the motion planning phase [14] 
and 2) the trajectory following phase. In the biped robots, the 
motion planning (i.e. the gait generation) phase may be 

performed off-line or on-line [9]. The offline gait generation 
cannot adapt to the environment changes like obstacles, which 
can reduce the robot’s abilities to walk. There are different 
methods for the on-line gait generation that can adapt to the 
environment. An on-line adaptive optimal gait pattern would 
facilitate best the biped robot motion control. Although 
consuming more efforts to reduce the error of tracking is the 
goal of lots of control problems, perfect joint trajectory 
tracking is not necessary in the biped motion control since the 
biped robot may have normal and acceptable walk even if 
there are some errors in the trajectory tracking of the joints. 
Thus, ordinary robot motion planning methods may not fit 
well to the biped robots. The Human walking approach is 
based on optimal algorithms, which use some goals and 
constraints to displace the body or the Center of Mass (CoM) 
from one point to another, while considering and predicting 
the environment changes, in order to decide adaptively to 
accomplish safe and without falling walk [9]. A suitable way 
of imitating this behavior for motion control of the biped robot 
is to state the problem as a non-linear model based predictive 
control [15-17]. With an appropriate objective function, while 
considering the state and the control signal constraints plus the 
physical constraints, it is possible to combine the gait pattern 
generation phase with the control phase and allowing the 
NMPC to decide about both the gait pattern and the control 
signals. In this approach, there are no trajectories to follow. 
Instead, the control signals are generated by the NMPC 
directly in such a way that the biped robot is able to walk. In 
addition to the advantages of the on-line gait generation, this 
method considers the biped dynamics, constraints of the 
control signals, the present and the future of the biped states, 
and the physical constraints in the robot to execute more 
optimal and practical walking. 

As declared in the literature review, some papers have 
focused on the trajectory free NMPC control [8-10]; but a 
common problem in these papers is that the gait length is kept 
fixed or there is not an appropriate approach to change it. In a 
complete walking cycle, the biped has to start walking when it 
is in a stand up position. After some steps it must reach a 
stable limit cycle, which means almost a constant body 
progression speed and constant gait length. Then, reaching the 
destination, the walking progression speed and constant gait 
length has to reduce and finally the biped has to stop covering 
the desired displacement. On the other hand, the gait length 
can affect the energy consumption and walking stability. In 
addition, gait length plays an important role in handling of 
external sudden disturbance. Thus, letting the NMPC to adjust 
the length might be a good idea, which is achieved in this 
paper by redefining some constraints. Solving the whole 
problem using three NMPC instead of one, is another 
contribution of this paper. In previous papers, there is one 
NMPC that is responsible for the biped motion control. Due to 
the nonlinearity of the optimization problem, the NMPC that 
solves a large problem is divided into three NMPC each of 
which concentrates to limited constraints with an appropriate 
objective function. In this way, the computation time can be 
reduced substantially. It seems that the stance foot containing 
link one and two, the swing foot containing link four and five, 
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and link three, which is the torso, have different 
responsibilities and constraints during walking. Thus there 
may be three NMPCs each controlling one of the mentioned 
parts. These NMPCs work in series with each other. This 
procedure is followed in the subsections. 

A. Single Support Phase 

The stance foot plays an important role in the body 
progression during SSP and DSP. Thus, starting with the 
stance foot controller sounds a logical choice. Adjusting 
walking speed is the other responsibility of the stance foot. 
This NMPC has to cover constraints such as feasible angles 
for joints one and two, guarantying static stability, constraints 
for moving forward, and the hip height. These demands are 
considered as the objective function and constraints given as 

( ) ( ) ( )( )
1

2

Stance 1 1,2 1,2 2
0 1

TSt St d
CoM CoM

i j

StSt pcN N

J w t i t t i t w x t j t xα
−

= =

= + ∆ + ∆ + + ∆ −∑ ∑Τ Τ
⌢ɺ ɺ

(6) 

subject to 
1) Constraints for the angle of joints one and two  

,min ,max 1 1 2 1 2( 1, 2), ,
2i i iq q q i q q
π θ π θ θ≤ ≤ = = − = + −     (7) 

2) The moving forward constraint 

0CoMx ≥ɺ                                                (8)  

3) The upper and lower bound of the hip height 

min maxhiph h h≤ ≤                                   

(9) 
4) The upper and lower bound of the control torque 

,min ,max 1,2i i iT T T i≤ ≤ =
                    

      

   (10) 
5) And the static stability constraint 

( ) ( )
( ) ( )

DSP DSP
min max

SSP SSP
min max

for DSP

for SSP

CoM

CoM

x k x x k

x k x x k

≤ ≤

≤ ≤
                  (11) 

 

where 1, ,St St St
C PN N w and 2

Stw are the control and prediction 

horizons, energy consumption of link one and two and the 
progression speed weights, respectively. The horizontal speed 
centre of mass (CoM) has been selected as candidate of the 
biped walking speed. The NMPC optimizer tries to follow the 

desired d
CoMxα ɺ  while α  adjust the desired speed. 

Approaching the destination, the desired speed reduces 
exponentially as 
 

( )
1 2 / 1 exp

d
CoM CoMx x t j t

α
σ

  − + ∆
= − +   

  

⌢
  (12) 

 

where d

CoMx  is the desired displacement of the CoM and σ  is 

a designing parameter, ( )DSP
min ,x k  ( )DSP

max ,x k  ( )SSP
minx k , and 

( )SSP
maxx k  are shown in Fig. 2. 

 

         

 
 

Fig. 2. DSP and SSP supporting area and their margins. 
 

B. Swing Foot Control 

Using the optimized torques of joint one and two, the second 
NMPC starts its operation to generate appropriate torques for 
joint four and five. These torques must force the swing foot to 
move in a parabolic path in the sagittal plane. The second 
NMPC achieves this goal by complying the horizontal and 
vertical speed constraints of the swing foot and some other 
constraints. In addition to the energy consumption cost of 
joints four and five, there is another term that forces the swing 
foot to reduce its height while CoM reaches its higher margin. 
This term may change the step length and force the swing foot 
to land quickly when CoM reaches to its higher margin sooner 
than usual. This situation may be caused by a sudden pushing 
disturbance. Thus, this term may help the biped to recover its 
balance. Therefore, the second NMPC objective function and 
its constraints can be stated as  

( ) ( ) ( ) ( )
1

Swing 1 4,5 4,5 2
0 1

TSSP Sw Sw
e

i j

SwSw pc NN

J w t i t t i t w j y t j t
−

= =

= + ∆ + ∆ + + ∆∑ ∑Τ Τ
⌢ (13) 

subjected to 
1) Constraints for the angle of joints four and five  

( ),min ,max 4 4 5 5 3 4( 4, 5), ,i i iq q q i q qθ π θ θ θ≤ ≤ = = = + − +  (14) 

2) The lower and upper bound of the control torque 
constraints 

,min ,max 4,5i i iT T T i≤ ≤ =                  (15) 

3) The lower and upper bound of the swing foot height 
constraints 
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mb e by y y h≤ ≤ +            (16) 

4) The horizontal speed of the swing foot constraints 

min max
max max

sin sin
2 2

e b e b
CoM e CoM

y y y y
x x x

h h

π πβ β
   − −≤ ≤   
   

ɺ ɺ ɺ   (17) 

5) The vertical speed of the swing foot 
constrain

( )
max

sin sin 0e b e b
CoM e b e

x x y y
x sgn x x y

L h
δ π π

 −   − + − ≤   
  

ɺ ɺ    (18) 

where 1, ,Sw Sw S w
C PN N w and 2

S ww are the control and the 

prediction horizons, the energy consumption cost of links four 
and five, and the penalty for the swing foot height, 

respectively, ( ),
T

b bx y and ( ),
T

e ex y  are the base and the 

swing foot tip positions, respectively, L  is the length of the 

previous gait, and mh  is the maximum allowable height of the 

swing foot. Eqs. (17) and (18) adjust the horizontal and 
vertical speed of the swing foot while synchronizing them 
with the CoM horizontal speed. It should be noted that no 
desired gait length is considered in these equations; hence, it’s 
free to change. Eq. (17) forces the horizontal position of the 
swing foot to be zero when it lands. Eq. (18) adjusts the 
vertical speed of the swing foot vertical based on its horizontal 

and vertical positions. min ,β maxβ , and δ  are tuning 

parameters and 2
S ww is 

( )
( )

2 1

0 ( )

( )b CoM

e b
Sw

FL

FL x x j

e b

x t j t x
w j

e x t j t x
ε

εη
 + −  + + − 

+ ∆ ≤
= 
 + ∆ >

⌢

⌢

(19) 

where FL  is the foot length. As soon as the CoM reaches its 

maximum allowable position, which is equal to ,bFL x+  

2
S ww grows exponentially and increases the cost of the swing 

foot height. ε  is a designing constant to prevent 2
S ww  to 

become infinite. It must be noted that during the DSP the 
swing foot has to remain on the ground and thus, the NMPC 
for DSP reduces to 

( ) ( )
1

DSP
Swnig 4,5 4,5

0

Sw
cN

T

i

J t i t t i t
−

=

= + ∆ + ∆∑ Τ Τ               (20) 

Subject to (14) while satisfying .e by y=  

C. Torso Angle Control 
Using the optimized torques of joints one, two, four and five, 
the third NMPC generates appropriate torque for joint three. 
The torso contains a major part of the biped weight. Thus, it 
may strongly affect the CoM and the biped stability. The third 
NMPC has to limit the torso angle in an acceptable region 
while satisfying the static stability. The third NMPC is given 
as 

( )
1

2

Torso 3
0

To
c

i

N

J T t i t
−

=

= + ∆  ∑                                            (21) 

subjected to 
1) The torso allowable angle 

min 3 maxα θ α≤ ≤                            (22) 

2) The lower and upper bound of the control torque 
constraint 

3,min 3 3,maxT T T≤ ≤                                                         (23) 

3) The biped static stability constraint 

( ) ( )
( ) ( )

DSP DSP
min max

SSP SSP
min max

for DSP

for SSP

CoM

CoM

x k x x k

x k x x k

≤ ≤

≤ ≤
                    (24) 

where To
CN  is the control horizon, and minα and maxα  are 

the minimum and maximum torso angles. 

4. NONLINEAR DISTURBANCE OBSERVER 

As stated in introduction, the aim of this paper is to propose a 
robust biped motion control with fewer limitations as 
compared to the methods proposed in literatures, while it 
rejects external disturbances appropriately. To this end, 
Disturbance Observer (DO) based control (an indirect robust 
control) method is adopted in this paper. In the previous 
section, the trajectory free NMPC was designed as the main 
controller. In this section, an appropriate DO is designed and 
added to the control loop. Although different DOs exist in 
literature, they can be classified into two categories: Linear 
DO (LDO) and Nonlinear DO (NDO). Although LDO have 
been applied to many nonlinear systems, but it may reduce the 
robustness of the closed-loop system, especially for highly 
nonlinear systems like bipeds. Therefore, in this paper an 
NDO is designed and employed. This DO contains nonlinear 
dynamics of the system and its stability can be guaranteed by 
Lyapunov methods. In [18] a Lyapunov-based NDO for a 
serial n-link manipulators has been proposed. Using the 
similarity between the SSP of the biped dynamic and the 
manipulator dynamic, the proposed NDO may be a good 
selection. However, the DSP dynamic of biped is slightly 
different from the manipulator dynamic. As soon as the swing 
foot of the biped touches the ground, a 2 1×  vector of 
external forces (caused by the horizontal and vertical ground 
reactions and frictions) is added to the biped input. Treating 
the DSP dynamics as the SSP dynamics, the NDO detects 
these external forces as disturbances and tries to omit them. 
Zero reaction forces means the biped has started the SSP, 
which contradicts with the real dynamic of the biped. The 
biped inertial matrix differs from the manipulator inertial 
matrix used in the [18]; thus, some modification in the NDO 
design is needed. In the followings the NDO is designed and 
added to the control loop. 
Using (3) and assuming additive disturbances, the overall 
biped dynamic becomes 

( ) ( ) ( ), T+ + = + +n n n n dist nD θ θ H θ θ θ G θ Τ Τ J λɺɺ ɺ ɺ  (25) 

where ,n nD H  and 
nG  are the nominal inertial matrix, the 
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nominal centrifugal and Coriolis terms, and the nominal 

gravity terms of the biped robot, respectively, T
nJ λ  is the 

ground reaction vector while the biped parameters have 

nominal values. By defining T′ = +n n nT T J λ , (25) will be 

similar to the SSP dynamic. The additive disturbance may be 
divided to the internal and external disturbances as 

= +dist dist,ext dist, intT T T                                                     (26) 

where δ δ δ= − − −dist,intT Dθ Hθ Gɺɺ ɺ  is the additive 

uncertainty of the biped dynamics and dist,extT  is the external 

disturbance vector that contains torques due to the unknown 
loads, external forces, friction forces, and torque ripples. 
According to [18], the disturbance observer dynamic may be 
designed as 

( ),+ =e L θ θ e 0ɺɺ                                                               (27) 

where ˆ= −dist diste T T , in which ˆ
distT  is the observed 

disturbance. Assuming slow varying disturbances, distTɺ  can 

be omitted from (27). By appropriate design of ( ),L θ θɺ , the 

NDO error may reduce exponentially and the disturbance 
would be observed. Substituting (25) in (27), the NDO 
dynamic is 

( ) ( ) ( )
( )

,
ˆ ,

ˆ

 + +
 =
 ′+ − − 

n n

dist

n n dist

D θ θ H θ θ θ

Τ L θ θ

G θ Τ T

ɺɺ ɺ ɺ
ɺ ɺ .                    (28)  

As (28) shows, the acceleration signal θɺɺ  is required to realize 
the DO. Since measuring acceleration is a difficult task in 
many robotic applications, the problem can be solved by 
defining an auxiliary variable ( )ˆ= −distΨ T P θɺ  where ( )P θɺ  is 

defined as ( ) 1 2 5

T
c θ θ θ =  P θɺ ɺ ɺ ɺ⋯  and c  is the observer 

gain1. Differentiating Ψ  w.r.t. time and substituting into (28) 
gives 
 

( )ˆ
∂

= +
∂dist

P θ
T Ψ θ

θ

ɺ
ɺ ɺ ɺɺ

ɺ
                         (29) 

( ) ( ) ( ) ( )
( )

,
,

ˆ

 +∂
 + =
 ∂ ′+ − − 

n n

n n dist

D θ θ H θ θ θP θ
Ψ θ L θ θ

θ G θ Τ T

ɺɺ ɺ ɺɺ
ɺ ɺɺ ɺ

ɺ
  (30)  

Defining ( ) ( )1, c −= nL θ θ D θɺ , the acceleration signal in (30) 

may be omitted and the simplified equation becomes 
 

( ) ( )
( ) ( )
,

,
 +
 =
 ′+ − − − 

n

n n

H θ θ θ

Ψ L θ θ

G θ Τ P θ Ψ

ɺ ɺ
ɺ ɺ

ɺ

. (31)         

Based on Fig. 3, Eq. (31) may be rewritten as: 

                                                 
1 In this paper

 
( )θP ɺ and ( ),L θ θɺ  definition are slightly 

different from [18]. 

 

( ) ( )
( )
,

,
T

 +
 =
 + − − 

n

n c n

H θ θ θ

Ψ L θ θ

G θ Τ J λ

ɺ ɺ
ɺ ɺ     (32) 

Based on the appendix in [11], nλ  is 

 

( )( )1
, , ,

−= − + +n c2 n a21 n b2 n n dist nλ S S ω S Τ Τ - Nɺ   (33)      

where , , ,, , ,c2 n a21 n b2 nS S ω Sɺ , and nN  are given in the 

appendix of [11]. According to the definition of the 

observation error in (33), nλ  can be written as 

( )( )1
, , ,

−= − + +n c2 n a21 n b2 n c nλ S S ω S Τ e - Nɺ                         (34) 

where all terms are known. In must be noted that the NDO 

design in the SSP is the same as the DSP when 0.=nλ  In 

order to guarantee stability of the NDO, [18] has proposed a 
Lyapunov-based theorem to obtain the nonlinear disturbance 
observer gain .c   This theorem is based on two properties: 

Property I: ( )nD θ is symmetric, positive definite, and 

bounded below and above, i.e., 0α β∃ ≥ >  such that 

( )n nβ α≤ ≤nI D θ I , n∀ ∈θ R  where nI  is an n n×  

identity matrix. 

Property II: The torque vector nT  is bounded. Thus, the 

angular velocity vector θɺ  lies in a known bounded set. 

I.e., { }: .∈ ≤ maxθ
θ Ω θ θ θɺ
ɺ ɺ ɺ ɺ≜  

As stated in Section II, nD  a positive definite and symmetric 

matrix. Thus, Property I is satisfied. Property II is properly 
true due to the constraints on the torque bound of the NMPCs. 

Based on the slight modification on ( )P θɺ  and following 

stability proof in [18], the allowed bound of NDO gain can be 
stated as 

 

−+ ++ ++nTcT

ˆ
distT

 
=  
 

θ
X

θɺ

TJ λdistT

+

TJ λ

+

 
Fig. 3. Block diagram of the control method including NDO 
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( ) { }
{ }

21 21 31 31 54 54

21 21 31 31 54 54

1
max , , ,

4

5 max , , ,

n n
c p p p

p p p

θ θ θ

θ θ θ

−
> ×

= ×

ɺ ɺ ɺ⋯

ɺ ɺ ɺ⋯

        (35) 

where ijp  are constant parameters that depend on the masses 

and the length of the biped links, and n is the number of links.  
The block diagram of the closed-loop system is shown in Fig. 
3. 

5. Simulation Results 

Simulations are based on the biped BIP2000, which have been 
developed by Azevedo et al. [8, 9]. The physical parameters of 
this biped are given in Table I. In Table II, the maximum and 
minimum of the NMPC constraints have been listed. 
Moreover, the following values are used in the NMPC 
simulations:  

3St Sw To
C C CN N N= = =        3St Sw To

P P PN N N= = =       

0.02st∆ =    0.2mFL =      0.02,σ =  
1 10.3m.s 1.08Km hd

CoMx − −= =ɺ    

min max4 6 1.5β β δ= = =
 

According to (35), the observer would be globally 
asymptotically stable if parameter c is larger than 690. For 
faster convergence, this parameter has been selected equal to 
1000 in simulations. The optimization problem is solved using 
the fmincon function in the MATLAB optimization toolbox 
dedicated to the minimization of a constrained nonlinear 
multivariable function. The fmincon is based on the sequential 
quadratic programming (SQP) algorithm. The SQP is an 
iterative technique in which the objective is replaced by a 
quadratic approximation and the constraints by linear 
approximations. Simulations are performed using Intel T7500 
Core2 Duo 2.2 MHz processor with 1Gbyte of RAM.  
The biped is supposed to start walking from the initial stand 
up orientation and follow a desired progression speed. As the 
biped reaches the destination, it has to reduce its speed and 
come to a complete stop passing 120 cm distance. All initial 
velocities and accelerations are set to zero. Knowing the 
position of the base foot, the biped orientation may be 
specified by the hip and swing foot positions. The initial 
orientation of the biped is selected near the stand up 
orientation as 

0.1 m, 0 m, 0.05 m, 0.7 m,e e h hx y x y= − = = − =
 

Simulations are carried out for three different cases. In the first 
case, the biped is exposed to slow varying disturbances. 
Internal disturbances are applied to the biped robot by 50% 
increase to the mass and inertia and 50% displacement of the 
centre of mass of all five links of the robot. Coulomb and 
viscous frictions and a constant torque of 30 Nm are exerted to 
all joints as the external disturbance. The Coulomb and 
viscous frictions is modeled as

  

( ), 1 2

-1
1 2

sign

50 Nm, 6 Nms rad 1, ,5

dist
ext i i i i i

i i

T K K

K K i

θ θ= +

= = =

ɺ ɺ

…  
In the second case, a sudden pushing disturbance at 

2 st =  is exerted on the biped. This disturbance is modeled 

as an impact that has caused 5 deg and 1 rad/s sudden increase 
in the angular position and the velocity of the joint three, 
respectively.  
In the third case, the effect of the measurement noise on the 
performance of the proposed method is examined. Gaussian 
noise with zero mean and variance equal to 0.01 and 0.1 are 
added to the angular position and velocity of joint three, 
respectively.  
Simulation results are shown in Figs. 4 to 11. As Fig. 4 shows, 
the biped has started walking with zero initial velocity and has 
stopped by reducing its speed exponentially while it has 
passed 120 cm distance. The desired progression velocity is 
achieved. Although there are sudden decreases in the CoM 
velocity in the first steps while the biped switches from SSP to 
DSP, this problem is fading out in next steps. Fig. 5 shows that 
the swing foot has almost parabolic trajectory and the hip 
height changes are limited. In other words, the biped has 
smooth and normal walking. Figs. 6 and 7 show the exerted 
torque by the actuators and the estimated disturbance torque 
by the NDO, respectively. These figures exhibit that the NDO-
based NMPC is able to handle slow varying disturbances 
caused by additive uncertainties and additive external torques. 
Fig. 8 shows that the horizontal position of the swing foot is 
clipped after the external sudden disturbance is exerted on the 
biped. This means that the gait length is shortened by the 
controller and the DSP has happened sooner in order to 
recover the static stability through establishing a wider 
supporting area. In order to evaluate the performance of the 
proposed method against measurement noise, a 10% Gaussian 
noise is added to the joint three, which has a profound role in 
the biped stability. Fig. 9 shows the angular velocity of joint 
three before and after of the measurement noise. Fig. 10 
exhibits that the controller is able to attenuate the 
measurement noise. However, Fig. 11 shows that in order to 
overcome the measurement noise, higher frequencies appear 
in the control signals, may or may not be achievable in 
practice. Finally, Fig. 12 shows the performance of the NMPC 
for the case 1 but without NDO. As this figure shows, the 
biped is not able to maintain its stability and eventually falls 
down. 

6. Conclusions 

In this paper, the nonlinear disturbance observer was 
employed to robustify nonlinear model predictive control of 
biped robots. Defining a suitable objective function and 
appropriate constraints, the gait generation phase was 
discarded and included in the control phase using the NMPC. 
In contrast to the previous papers, which have defined fixed 
step length, in this paper, the step length can be changed by 
NMPC to optimize the energy consumption and stability. 
Using this ability, the controller may overcome sudden 
pushing disturbances by changing the gait length. The NDO 
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improved robustness of the motion controller in the presence 
of the biped robot parameter variations and the unmodeled 
dynamics. Simulation results show that the proposed method 
has the ability to reject sudden pushing and slow varying 
disturbances. Handling sudden disturbances in the biped is 
much more complicated than stated in this paper and needs 
more attentions. Thus, improvement of push recovery ability 
of the controller may be a future work of this paper. Instead of 
using one NMPC confronting the whole problem, three 
smaller NMPCs were designed which work in series, 
consuming less computation time. Using this idea and trying 
to solving these three NMPCs in parallel may reduce the 
computation time more effectively.  

 
TABLE 1: Physical parameters of robot [19] 

 
 

Link 
No. 

il  
Length (m) 

im  
Mass (Kg) 

iI  
Inertia(Kg

m2) 

id  
CoM 
(m) 

1 0.41 5.93 0.69 0.258 
2 0.41 10.9 1.31 0.258 
3 0.5 48 18.99 0.391 
4 0.41 10.9 1.31 0.258 
5 0.41 5.93 0.69 0.258 

 
TABLE 2: Maximum and minimum of constraints 

  
Variable 

il  

Length (m) 
iI  

Inertia (Kgm2) 

1
q  30

°  120
°  

2 5
,q q  190

°  270
°  

3 4
,q q  100

°  240
°  

hiph  0.68 m 0.72 m 

3
θ  3

°−  3
°  

m
h  0 0.05 m 

i
T  -300 N.m 300 N.m 
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Fig. 4. Horizontal position and velocity of CoM with slow varying 

disturbances. 
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Fig. 5. Hip and swing foot tip vertical and horizontal positions with 

slow varying disturbances. 
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Fig. 6. Joint torques. 
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Fig. 7. Estimated disturbance torques. 
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Fig. 8. Horizontal position and velocity of CoM with sudden pushing 

disturbances. 
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Fig. 9. Torso angular velocity with and without measurement noise. 
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Fig. 10. Horizontal position and velocity of CoM with measurement 

noise 
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Fig. 11. Joint torques with measurement noise. 
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Fig. 12. Horizontal and vertical position of swing foot and hip without 
NDO. 
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