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Abstract - In this paper, an adaptive control method for hybrid position/force control of robot 
manipulators, based on neuro-fuzzy modeling, is presented. Since the force control involves 
applying certain amount of force on the surface of an object, it is important to consider the friction 
force between the end-effector and the surface into account. In order to compensate this friction 
force, a robust and adaptive neuro-fuzzy compensator will be designed and incorporated into the 
close-loop system. Moreover, to determine stiffness coefficient of the surface, an on-line estimator 
will be designed for more precise computation of the desired force. Due to the adaptive neuro-fuzzy 
modeling, the proposed controller is independent of the robot dynamics, since the free parameters of 
the neuro-fuzzy controller are adaptively updated to cope with the changes in the system and the 
environment. As a result, the tracking error, both for position and force, will always remain small. 
Also, the stability of the controller is guaranteed, since the adaptation law is based on Lyapunov 
theory. In addition to that, the convergence of the adaptive parameters will be proved in this paper. 
The simulation results show good performance of the proposed controller as compared with other 
conventional control schemes for robot manipulators such as computed torque method. 
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1. Introduction 
Neuro-fuzzy controllers have been successfully applied in the past two decades by many 
researchers to nonlinear systems. The motivation for this utilization stems from two fundamental 
properties of neuro-fuzzy systems: 1) the ability to incorporate the knowledge of experts into a 
controller as fuzzy IF-THEN rules, which makes the design of the controller independent of the 
system dynamics or at least there is no need for exact mathematical model of the system, and 2) the 
unique property of the neural networks, which is called training, to adapt the free parameters of the 
controller to the changes in the system parameters and the environment, which makes the controller 
more robust.  

When the end-effector of a robot manipulator is moving in free space, the main goal is to control 
the arms of robot such that it follows the desired trajectory. On the other hand, when robot must 
hold and move an object, or when the end-effector must come in contact with a surface with friction 
and unknown stiffness, then there must be force control in addition to the position control of the 
end-effector. This task is well known as the position/force control of robot manipulators. Two force 
control methods have been extensively studied by many researchers in the past two decades: 1) the 
hybrid position/force control method [1] and 2) the impedance control method [2]. In both methods 
a precise control scheme is necessary in order to move the end-effector on the right path, exerting 
the correct amount of force on the object. If the force is not controlled with certain degree of 
precision, there either will be no contact between the end-effector and the object, or the object and 
the arms of the robot will be damaged. Hence, the position/force control of robot manipulators 
requires accurate controllers, especially when the stiffness of the surface is unknown in advance, 
which is common in most applications such as grinding, pounding, polishing, deburring and 
twisting. 
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In recent years, intelligent methods and algorithms, like neural networks and fuzzy logic have been 
employed for position/force control of manipulators. Hsu and Fu in [3], [4] and [5], have proposed 
an adaptive fuzzy hybrid position/force controller, in which the adaptive parameters are the centers 
of the membership functions in the tally part of the fuzzy IF-THEN rules, but the friction force has 
not been taken into account. Kiguchi and Fukuda in [6] and [7], and Kiguchi et al. in [8] have also 
used a neuro-fuzzy method for position/force control, but with a simple and static model for the 
friction between the end-effector and the surface. The friction compensation has been performed 
with one neuron, whose output is multiplied to a weight, which is the coefficient of the static 
friction of the surface. The weight is not trained adaptively. Also, Kiguchi and Fukuda in [9] have 
used the neuro-fuzzy method to control a 2DoF robot manipulator, assuming that the stiffness 
coefficient of the surface is known and the friction force is negligible. The proposed controller in 
[10] by Xiao et al. has the advantage of handling the position/force control in an uncalibrated 
environment. But, the controller needs an optical sensors and a visual system to observe the 
conditions of the surface. In many applications, such as grinding and deburring, due to the dust and 
undesired particles in the environment, the output of the visual system can be noisy and imprecise, 
hence hampering the task. 
In this paper an adaptive neuro-fuzzy controller with an adaptive neuro-fuzzy friction compensator 
is proposed for hybrid position/force control of robot manipulators. Thanks to the adaptive neuro-
fuzzy modeling, both for the controller and the friction compensator, the proposed method is 
independent of the robot dynamics as well as the conditions of the environment. This is due to the 
fact that the free parameters of the neuro-fuzzy controller as well as the neuro-fuzzy compensator 
are adaptively updated to the changes in the system and the environment. The main advantage of 
the proposed control method is that the adaptation law is based on the Lyapunov stability theory, 
which guarantees the stability of the controller. Although the simulations are performed on a robot 
manipulator with three degrees of freedom with revolute joints, the proposed controller can be 
extended to robot manipulators with more degrees of freedom and different kind of joints. 
Moreover, the structure of the controller and the compensator is very simple, making it a very fast 
and appropriate method for different applications of robot manipulators. The simulation results 
show good performance of the proposed controller as compared with other conventional control 
methods such as computed torque method. 
 
 
2. Manipulator Dynamics and the Model of Contact Surface 
2-1 Manipulator Dynamics 
The dynamic equation of a robot manipulator can be expressed in Cartesian space as [11]: 

( ) ( ) − −x x x x e sM x x + C (x, x) + G x + D (x) = f f f&& & &                                    (1) 
where 1n×∈x ¡  is the position vector of the end-effector, ( ) n n×∈xM x ¡  is the inertia matrix, 

1n×∈xC (x,x)& ¡  is the centrifugal and coriolis force vector, 1n×∈xG (x) ¡  is the gravity force vector, 
1n×∈xD (x)& ¡  is the vector for joint friction force of the robot arms, 1n×∈f ¡  is the required force 

vector to move the end-effector, 1n×∈ef ¡  is the applied force vector to the surface by the end-
effector, and 1

s
n×∈f ¡  is the force vector for the surface friction in Cartesian coordinate. Equation (1) 

can also be written as 
m e s( ) ( ) − −x x x xM x x + C (x, x)x + G x + D (x) = f f f&& & & &                                   (2) 

where xm
n n×∈C ¡ . Fig. 1 shows the schematic diagram of a 3DoF robot manipulator, consisting of 

waist, shoulder and elbow. The position of the end-effector in the Cartesian coordinates can be 
calculated in terms of joint angles as 
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Fig. 1- Schematic diagram of a 3DoF robot manipulator in Cartesian coordinate 

 

 

Differentiating Eq. (3) w.r.t. time and writing in vector-matrix form, we have 
( )=x J θ θ&&                                                                    (4) 

where ( ) ×∈ n nJ θ ¡ is called the Jaccobian matrix, which can be used to find the relationship between 
the joint-torques vector and the end-effector force vector as 

( )T−f = J θ τ                                                                   (5) 
Also, the following equations hold between the matrices and vectors in Cartesian coordinate and 

in joint-angle coordinate, using the Jaccobian matrix 
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where M(θ) , C(θ,θ)& , G(θ) , and D(θ)&  are the equivalent of ( )xM x , xC (x, x)& , ( )xG x , and xD (x)& , 
in joint-angle coordinate, respectively, and can be expressed for a 3DoF robot manipulator as 
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where , , and ( 1, 2,3)i i il m i =θ  are the length, weight and angular position of joints, respectively; and 
cosi ic = θ , sini is = θ , cos( )ij i jc = +θ θ , and sin( )ij i js = +θ θ . 

 
 
2-2 The Characteristics of the Contact Surface 
In order to characterize the surface, which comes in contact with the end-effector, two mathematical 
models are considered here. The first one is in the direction of the force perpendicular to the surface 
and the second one is in the direction of movement, tangent to the surface. The perpendicular model 
describes the stiffness degree of the surface, and is used for force control. The tangent model 
expresses the friction properties of the surface and is used for force as well as position control of the 
end-effector. 
 
2-2-1 The Perpendicular Model 

The mathematical model in the perpendicular direction of the contact surface is a spring model 
(Fig. 2) [8], [13], [14], [15]. If the external applied force to the surface is shown with ef , then 

 ( )e e ef k x x= −                                                               (8) 
where ek  is the stiffness coefficient of the surface, in N/m, and x  and ex are the position of the 
end-effector and the surface, respectively (Fig. 2). 

 
 
 
 
 
 
 
 

Fig. 2- The perpendicular model of the surface 

According to Fig. 2, if the external force ef  is applied to the surface with stiffness coefficient ek , 
the shape of the surface will be deformed in form of a hole. The higher the stiffness of the surface 
is, the smaller the depth of the penetration will be. For instance, 10 N force applied to a surface with 

10000ek = N/m can penetrate 0.001 m. In this paper it is assumed that the surface of the object lies 
on 21 xx −  plane, hence 0=ex . 
 
2-2-2 The Tangent Model 

When an object is moving on a surface, there will be friction force between the object and the 
surface. This force is due to the applied perpendicular force to the surface and is in the opposite 
direction of the movement. Fig. 3 shows the affecting forces applied to an object, moving on a 
surface. In this Fig., 1fτ  and 2fτ  are moving forces along 1x  and 2x  axis, respectively. The 
frictions forces 1sf  and 2sf  always act in the opposite direction of the moving forces on the surface.  
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x 
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There are many models available in the literature to represent friction forces. Bona and Indri in 
[16] have shown that a comprehensive mathematical model for friction force sf  can be given in 
terms of applied perpendicular force ef  as  

1 2
0 1 2 (1 ) sgn( )v v

s ef e e f vβ βγ γ γ− − = + + −                                       (9) 

where v  is the speed of the object, 0 1( ) efγ γ+  is the stiction friction, 0 2( ) efγ γ+  is the dynamic 
friction at higher speeds, ( , 0,1,2)i i ef i= =γ α , 1β  shows the damping rate of friction at lower 
speeds and also is an indication of negative slope in the stiction region (Fig. 4), and 2β  specifies the 
ascending rate of friction at higher speeds. 

Fig. 4 shows the surface friction force versus the speed of the object [17], [18] and [19]. In this 
Fig., there is a negative slope at lower speeds, which is called the Stribeck effect. If this effect is not 
compensated, there could be instability around the origin of the friction force-speed characteristics 
[16].  

In position/force control of robot manipulators, the opposing surface friction force must be 
compensated appropriately; otherwise it could create difficulties in control process, especially in 
position control, and yet could lead to very large steady-state errors or even can become unstable. 
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Fig. 3. Applied forces to an object moving on a surface 

 
 

Fig. 4. The complete model for friction with Stribeck 
effect 

 
 

2-3 Surface Coefficient Estimation 
Usually, the surface friction coefficient is an unknown parameter and should be estimated with 
good accuracy; otherwise it could lead to large errors in forces applied to the surface or even 
instability. Since this friction can change with time, the best way to estimate it is to employ an on-
line method [24]. The relationship between the applied force to the surface and the amount of the 
depth of the penetration can be expressed as (Fig. 2): 

( )
e

e
e

fk
x x

=
−

                                                                 (10) 

Here, ef  can be measured by a force sensor located at the end-effector and ( )ex x−  can be 
calculated by transforming the angular joint position to the Cartesian space. Since the obtained ek  
is not the actual value of the surface coefficient, therefore, the estimated value of this parameter is 
shown with êk  in Fig. 5.  
In this paper it is assumed that the end-effector is always in contact with the surface and the force 
measurement at the end-effector is accurate enough, avoiding zero estimation of the surface 
stiffness coefficient. 
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3- Adaptive Neuro-Fuzzy Controller  
The goal in this paper is to control position and force of a robot manipulator with 3DoF, with the 
end-effector moving on a surface in the 1 2x x−  plane (Fig. 1), while applying force in the negative 
direction of the 3x  axis (i.e. perpendicular to the 1 2x x−  plane). The control action is performed in 
the Cartesian space 1 2 3[ ]Tx x x=x , but in practice the robot movement is in the joint space 

1 2 3[ ]T=θ θ θ θ . Therefore, the Cartesian space is used for controller design, and then using Tτ = J f , 
where J is the Jaccobian matrix, the control force f  can be converted to the control torques τ  to 
apply to the robot arms. Hence, the task of the controller is to move the end-effector along the 
desired path [ ]1 2 3

T
d d d dx x x=x . Since the force is applied to the surface along the 3x  axis, then  

( )3 3e e ef k x x= −                                                            (10) 
Also, since we assume that the surface of the object lies on the 1 2x x−  plane, then 3 0ex =  and we 
have 

[ ]1 2 / T
e ex x f k=x                                                         (11) 

Therefore, the desired path and desired force can be defined as 
[ ]d 1 2 / T

d d d ex x f k=x ,     [ ]d 0 0 T
df=f                                     (12) 

The error between the desired and the actual vectors for the position, velocity and acceleration of 
the end-effector is 

d 1 1 2 2

T
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k

 −
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e x x ,  d= −e x x& & & ,  d= −e x x&& && &&                  (13) 

Now, let define sliding vector 1n×∈s ¡  as 
+s = e Λe&                                                                (14)                                                         

where { }1diag ,..., n n
n

×= ∈Λ ¡λ λ  is a diagonal and positive definite matrix [20]. Differentiating  
(14) w.r.t. time and calculating e&&  in terms of s  using (2), we have 

x x d xm d xm x x e sM (s -Λe) = M x + C x - C (s -Λe) + G + D + f + f - f& & && &                    (15) 
or 

x x d xm d xm x x e sM s = M (x +Λe) + C (x +Λe) - C s + G + D + f + f - f& &&& &                   (16) 
Then, selecting the control law as 

x d xm d x x e sf = M (x +Λe) + C (x + Λe) + G + D + f + f + Ks&&& &                        (17) 
where n n×∈K ¡  is a positive definite matrix, and substituting (17) into (16) yields 

x xmM s + (C + K)s = 0&                                                       (18) 
Eq. (18) shows that using control law in (17), the closed-loop equation is a first order system. 

Moreover, since the coefficients in (18) are not zero, the sliding vector s  must approach zero in 
order to satisfy (18). But the main obstacle in realizing this control law is that matrices 

,x xm xG , C , M and xD  in (17) are usually undefined and unknown. Some of the terms of the control 
law (17) can be written as [12] 

d d x d xm d x xY(x,x, x , x )φ = M (x +Λe) + C (x + Λe) + G + D&& & && &                            (19) 
where r×1∈φ ¡  is a vector of the unknown parameters and n×r∈d dY(x,x, x , x )& & ¡  is a regression 
matrix and known. Vector φ  can be considered as the adaptive parameter, which should be adjusted 
in such a way to guarantee the stability and the minimum error of the closed loop system. Eq. (19), 
which is the nonlinear part of control law (17), can be written using robust control method as [5] 

=d d x d xm d x xY(x,x, x , x )φ = h( x ,s) M (x +Λe) + C (x + Λe) + G + D&& & && &                    (20) 



 

where x  is the norm of the position vector, s  is the sliding vector defined in (14), and 
n×1∈h( x ,s) ¡  is an unknown vector whose elements can be defined as 

* T
i i i ih s( x ,s) = w η ( x , )                                                      (21) 

where r 1
i is ×∈η ( x , ) ¡  and *

iw  is the optimal value of r×1
i ∈w ¡ . Hence, equation (16) and the 

control law (17) become 

1
* * *

1 1 2 2 2 3 3 3

TT T Ts s s  x xm e sM s = w η ( x , ) w η ( x , ) w η ( x , ) - C s + f + f - f&             (22) 

1
* * *

1 1 2 2 2 3 3 3

TT T Ts s s   e sf = w η ( x , ) w η ( x , ) w η ( x , ) + f + f + Ks                  (23) 

In fact, the nonlinear part of the recent equation has been given as the product of η( x ,s)  and 

w , where 1 2 3[ ]T T T T=w w w w  is the adaptive parameter of the controller and must be adaptively 
trained as on-line to minimize the tracking error, to cope with the changes in the system parameters 
and the environment, and to maintain the stability of the closed-loop system. Since the proposed 
controller in this paper is of neuro-fuzzy type, therefore, w  is considered as the weight vector of the 
neuro-fuzzy network, which is trained on-line and adaptively to perform the above three tasks. 
Also, another adaptive neuro-fuzzy estimator, whose design will be explained in the next section, 
will compensate the friction force. 

The block diagram of the proposed method in this paper has been shown in Fig. 5. The controller 
block consists of three subcontrollers, one for each joint of the robot. There are also one block for 
estimation and compensation of surface friction force and another block for on-line estimation of 
stiffness coefficient of the surface. Since this coefficient is usually not only unknown but also 
varying, it is important to estimate it with good accuracy. Also, it should be mentioned that sensors, 
located at the joints of the robot, measure the angle and the angular velocity of joints. Therefore, 
these quantities need to be converted to position and velocity of the end-effector in Cartesian space 
using Eqs. (3) and (4). 

Each subcontroller has two inputs, x  (i.e. the norm of the position vector in Cartesian 
coordinates) and is  (the ith component, i =1, 2, 3, of the sliding vector s ). The internal connections 
of each subcontroller are shown in Fig. 6. The fuzzy rules of three subcontrollers can be defined as 

1 2 1 2 1 2R : IF is and is THEN isj j j j j j
i i i i iA s A y Bx                               (24) 

where 1j
iA  and 2j

iA  ( 1 1 2 21, 2, 3, 1, , , 1, ,i j l j l= = =K K ) are the 1thj  and the 2thj  fuzzy sets 
defined for the fuzzy input variables x  and is , in the ith subcontroller, respectively, and 1 2j jB  are 
the fuzzy sets for the tally part of the fuzzy rules. Using the Mamdani product inference engine, 
singleton fuzzifier, and center average defuzzifier, the output of the ith subcontroller can be 
calculated as 
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where 1 2j jy is the center of the membership function defined for fuzzy sets 1 2j jB  in (24).  
The adaptive parameters of the subcontrollers are the center of the memberships functions 

defined for fuzzy sets 1 2j jB  (i.e. 1 2sj jy ), which are the elements of w  in the adaptive control law 
(23). Therefore the three subcontrollers must be trained in such a way that the nonlinear functions 

, )T
i i isw η ( x  (i = 1, 2, 3) are estimated with good accuracy. In other words, we need an adaptation 

law for changing the free parameters of the subcontroller (i.e. 1 2sj jy ) in an on-line fashion subject 



 

to: 1) the stability of the close-loop system is guaranteed at all time, 2) the tracking error for 
position and force remains bounded and small, even for large changes in the system parameters and 
the environment. This adaptation law is based on Lyapunov stability theory and will be derived in 
section 5. In the next section, an adaptive neuro-fuzzy compensator will be developed for surface 
friction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5- Block diagram of the proposed adaptive neuro-fuzzy controller for hybrid position/force control of a 3DoF robot 
manipulator along with friction force compensator and the estimator for stiffness coefficient of the contact surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6- The neuro-fuzzy structure of the adaptive hybrid position/force control 
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4- Adaptive Neuro-Fuzzy Compensator for Surface Friction 
When the tip of the end-effector moves on the surface of an object, the surface friction force 

affects the performance of the controller and deters the correct process of the robot manipulator. 
Hence, it is important to compensate this friction properly; otherwise there will be large steady-state 
error. Moreover, the system might become unstable for surfaces with large friction coefficients. The 
friction force is affected by the movement of the end-effector on the surface and cannot be directly 
measured. The models given in section 2 have uncertainties and their parameters are unknown in 
practice. Moreover, the model may not precisely define the surface friction. Therefore, in order to 
compensate the friction force, one must find a good estimate of this force. Several methods have 
been proposed in literature for surface friction force compensation. One method is to take advantage 
of high gain in controller. This method compensates the required force to some degrees, but high 
gain can cause problems like unstability and lack of providing enough force by servomotors. Amirat 
et al. have proposed a robust compensator, which compensates friction to some good degrees, but 
due to inadaptability nature of the method, it cannot work well when friction force is increased. 
Also, It has not been mentioned how to determine the parameters of the compensator [21]. The 
other method is to use torque sensors in every joint of the robot to measure the actual torques and 
comparing them with the desired torques (output of the controllers). The difference is the amount of 
torque consumed for surface friction [22]. This method needs torque sensors in every joint of the 
robot.  

The proposed method in this paper is to estimate the surface friction force using an adaptive 
neuro-fuzzy estimator. The free parameters of this estimator are updated adaptively using the 
tracking errors until the friction force is completely compensated. 

Since the surface friction force is directly proportional to the applied force to the surface and has 
a nonlinear relationship with the velocity of the end-effector (Fig. 4), the appropriate input to the 
proposed estimator should be the velocity of joints in Cartesian space. Then, in order to calculate 
the required force for friction compensation, the output of the neuro-fuzzy compensator will be 
multiplied to the perpendicular force, applied to the surface. Therefore, three compensator must be 
designed, one for every direction. 

The fuzzy rules of subcompensators are defined as 
R : IF is THEN isj j j

i i i i ix A y B&                                          (26) 
where ( 1, 2, 3)ix i =&  is the ith component of the velocity vector of the end-effector in Cartesian 
coordinates, j

iA and ( 1, 2, 3, 1, , )j
iB i j l= = K  are the jth membership functions of the input and 

the output for the ith subcompensator, respectively, and iy  is the output of the ith subcompensator, 
which must be multiplied to ef  and added to the output of the neuro-fuzzy controller obtained form 
the equations in the previous section. Using singleton fuzzifier, product inference engine, and center 
average defuzzifier, the output of the ith neuro-fuzzy subcompensator cab be expressed as 

1

1
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j
i

j
i

l
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j

i l

iA
j

x y
y

x

=

=

=
∑

∑

&

&

µ

µ
                                                  (27) 

where jy  is the center of the jth membership function of the THEN part of the fuzzy rules in (26) 
and also the free parameters of the neuro-fuzzy compensators. Hence, The compensated force for 
surface friction in the ith direction is 

ŝi i ef y f=                                                                  (28) 

where ŝif  is the estimation of the ith component for surface friction and ef  is the perpendicular 
force, measured by force sensor, and applied to the surface of the object. Eq. (27) can be written in 
the following vector notation form 



 

( )T
i i i iy x= θ ξ &                                                                (29) 

where 1 Tl
i y y =  θ L is a vector containing the free parameters of the ith neuro-fuzzy 

subcompensator, 
1

( ) [ ( ) ( ) ] ( )l l j
i ii

l

i i i i iA AA
j

x x x x
=

= ∑ξ & & & &Lµ µ µ , and l is the number of fuzzy rules. 

Therefore, the estimated force for surface friction compensation is 

1 1 1 2 2 2
ˆ ˆ [ ( ) ( ) 0]T T T

e ex f x f=s sf = f (x θ) θ ξ θ ξ& & &                                       (30) 

where 1 2 0
TT T =  θ θ θ . The third component of the friction force is zero, because there are no 

desired movements in this direction. Hence, the control law given in Eq. (23) can be written as 
* ˆT

e sf = w η+ f + f (x θ) + Ks&                                                   (31)         

where 1
* * * *

2 3

TT T T =  w w w w . Therefore, the free parameters in the controller, w, and in the 

compensator, θ, must be appropriately adjusted during operation of robot to guarantee stability of 
the closed-loop system and to ensure small tracking error for position and force as well. Next 
section gives the proposed algorithm and the stability analysis of that, which are the main 
contributions of this paper. 
 
 
 
5- Adaptation Algorithm for Controller and Compensator 

There are two sets of parameters, w and θ, which must be trained during operation of robot to 
reach their optimal values *w  and *θ , respectively. Therefore, the errors for subcontrollers and 
subcompensators can be defined as 

*

* , 1, 2, 3i i i

i i i

i


=


ψ = w - w
φ = θ -θ

                                                   (32) 

 As a result, there are three sets of errors in the whole system, namely 1 2 3[ ]T T T T=ψ ψ ψ ψ , 

1 2 3[ ]T T T T=φ φ φ φ , and ( ) ( )d d− + −s = x x Λ x x& & , which can be incorporated into one error function in 
quadratic form, which is our candidate for the Lyapunov function 

1 1

1 1

1 1 1
2 2 2

n n
T T
i i i i i i

i i
V − −

= =

= + +∑ ∑T
xs M s ψ Γ ψ φ Φ φ                                  (33) 

where n=3 for a 3DoF robot, xM  is the same as in Eq. (1), and { }1diag , ,r r
i ri i

×∈ =Γ ¡ Kγ γ and 

{ }1diag , ,l l
i ri i

×∈ =Φ ¡ Kφ φ  are positive definite matrices, in which r  and l  are the number of 
fuzzy rules in the ith subcontroller and ith subcompensator, respectively. Differentiating (33) w.r.t. 
time yields 

1 1

1 1

1
2

n n
T T T T

i i i i i i
i i

V − −

= =

= + +∑ ∑x xs M s + s M s ψ Γ ψ φ Φ φ& && & &                             (34) 

Then, using Eq. (22) gives 

( )1
* * *

1 1 2 2 2 3 3 3

1 1

1 1

1[ ] 2
2

T T T T T T

n n
T T
i i i i i i

i i

V s s s

− −

= =

= +

+ +∑ ∑

e s x xms w η ( x , ) w η ( x , ) w η ( x , ) + f + f - f s (M - C )s

ψ Γ ψ φ Φ φ

& &

& &
        (35) 

Since 2x xmM - C&  is a skew symmetric matrix, we have 
2T

x xms (M - C )s = 0&                                                          (36) 
Substituting f  from (31) into (35) results in 



 

*
1 1 1 1 1 1
* 1 1
2 2 2 2 2 2

1 1*
3 3 3 3 3 3

ˆ

T T
n n

T T T T T
i i i i i i

i iT T

s s
V s s

s s

− −
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    = − + − − + +    
        

∑ ∑s s

w η ( x , ) w η ( x , )
s w η ( x , ) w η ( x , ) f f (x θ) Ks ψ Γ ψ φ Φ φ

w η ( x , ) w η ( x , )

& & &&   (37) 

Now, let the error between the estimated friction force ˆ *
sf (x θ )& and its actual value sf (x)&  be  

ˆ *
s sε = f (x) - f (x θ )& &                                                           (38) 

where  1n×∈ε R . This error can also be written as 

1 1 1 2 2 2
ˆ ˆ [ ( ) ( ) 0]T T T

e ex f x f− =*
s sf (x θ ) f (x θ) φ ξ φ ξ& & & &                                (39) 

Therefore, combining Eqs. (38) and (39) yields 

1 1 1 2 2 2
ˆ [ ( ) ( ) 0]T T T

e ex f x fs sf (x) - f (x θ) = φ ξ φ ξ + ε& & & &                                (40) 
Using (40) in (37) gives 
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Now, let 
1

1
i

0
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or   
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which yields 

i

1, ,
( )

i i i i i

i i e i i

s s
i n

s f x
−

∀ =
= −

ψ = Γ η ( x , )
φ Φ ξ
&

K
& &

                                    (44) 

Since *
i i iψ = w - w& & &  and *

i i iφ = θ -θ& && , and also since at the optimal point * 0iw =&  and * 0i =θ& , it can 
be concluded 

i

1, ,
( )

i i i i i

i i e i i

s s
i n

s f x
∀ =

=
w = Γ η ( x , )
θ Φ ξ
&

K& &
                                     (45) 

Integrating these equations gives the adaptive algorithms for updating the free parameters of the 
neuro-fuzzy controller and the neuro-fuzzy compensator 

2
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t
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∀ =

= +

∫
∫

w w Γ η ( x , )

θ θ Φ ξ
K

&
                       (46) 

Using these equations, the parameters are updated until they reach their optimal values in order 
to bring the position and force errors to minima. One important point is that equations (46) are 
independent of the robot dynamics and the surface friction.  

In the followings, it will be proved that adaptation law given in (46) can guarantee the stability 
of the closed loop system under certain conditions. 

 
Theorem 1: If  (46) holds t∀  and if ε  in (38) is bounded, then the closed loop system is stable 

t∀ . 



 

Proof: Since (46) is directly deducted from (44), hence, by substituting (44) into (41) it yields 
1 1

i i
1 1

n n
T T T T T T

i i i i i i i i i e i i i i e i
i i

V s s s f s f− −

= =

   = + + − + + − +   ∑ ∑-s Ks s ε ψ Γ Γ η ψ η φ Φ Φ ξ φ ξ&       (47) 

Now, since iΓ  and iΦ  ( 1, , )i n= K  are diagonal matrices, then their inverse exists and 
1

i i
− =Γ Γ I  and 1

i i
− =Φ Φ I . Therefore 

i i
1 1

n n
T T T T T T

i i i i i i e i i
i i

V s s f
= =

   = + + − + + − +   ∑ ∑-s Ks s ε ψ η ψ η φ ξ φ ξ&                   (48) 

which yields 
T TV = - s Ks + s ε&                                                        (49)                                                      

Since ε  is bounded, then matrix K  in (17) can be chosen as a diagonal and positive definite 
matrix with large elements as compared to the elements of ε  such that 

T T>s Ks s ε                                                           (50) 

Therefore, 0V <&  and the closed loop system is stable, which concludes the proof. 
 

Corollary 1: The adaptation law, given in (46) has the following properties 
1
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where 
1 1

1 1

( ) ( ) ( ) 1, ,
( ) ( ) ( ) , 1, 2,

i k i k i k

i k i k i k k

t t t i n
t t t t k

+ +

+ +

∆ = − =
∀∆ = − =

w w w
θ θ θ

K
K

                      (52) 

Proof: Without loss of generality, let 1 0kt − =  and kt t= . According to theorem 1, the adaptation 
law in (46) yields a stable closed loop system t∀ . Hence, according to the sliding control theory 
(Slotine, 1991) the sliding vector +s = e Λe&  in (14) must decrease asymptotically. That is  

lim ( ) 0it
s t i

→∞
→ ∀                                                     (53) 

Consequently, the integral terms of (46) go to zero 
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Hence, as k → ∞  
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Or equivalently 
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which must be true only if 
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This completes the proof.                     

Remark: In proof of Theorem 1, it was assumed that the elements of diagonal matrix K are large 
enough such that inequality (50) holds for different values of ε . This might create some difficulties 
in the control process, especially when the desired force is too large, which might create large 



 

overshoots. Moreover, when the states of the system are close to their desired values, but the 
difference between the desired force and the actual force is too high (i.e. when the end-effector is 
very close to the desired point but hasn’t touch it yet) the elements of matrix K  must be extremely 
high, which could lead to large chattering around the sliding surface. To overcome this problem, the 
following robust control law has been used in this paper (Sugie, 1988): 

1 1 1

2 2 2

3 3 3

( )
ˆ( ) ( ) sgn( )

( )

T

T

T

s
s
s

 
  + 
  

e s

w η x ,
f = w η x , + f + f x θ + K s Q s

w η x ,
&                                    (58) 

where { }1
1diag , ...,n

nq q×∈ =Q ¡  is a positive definite matrix. Now, the derivative of the Lyapunov 
function becomes 

sgn( )T TV = − −s K s + s ε Q s&                                                   (59) 
Let define the elements of matrix Q  to be 

 , 1,...,i iq i n≥ =ε                                                       (60) 

Then, 0V <& , and 0V =&  only if 0=s , which means that using control law (58), the closed-loop 
system is asymptotically stable. Moreover, this control law can avoid large chattering around the 
sliding surface. 
 
 
 
6- Simulations 
The membership functions for the input and the output variables of subcontrollers are shown in 
Figs. 7 and 8, respectively. The adaptive parameters for the controller (i.e. the elements of vector 
w ) are the center of the membership functions shown in Fig. 8 (i.e. 1 2sj jy  in (25)). Also, the fuzzy 
rules for subcontrollers have been given in Table 1. Therefore, each subcontroller has only 9 rules 
with only 9 adaptive parameters, which must be trained adaptively to minimize the tracking error. 
The membership functions for the input and the output variables of the subcompensators for surface 
friction are shown in Figs. 9 and 10, respectively. The adaptive parameters of the compensator (i.e. 
the elements of vectorθ) are the center of the membership functions shown in Fig. 10 (i.e. sjy  in 
(27)). Also, the fuzzy rules for subcompensators have been given in Table 2. As this table shows, 
the compensator has only 7 rules with only 7 adaptive parameters, which must be updated 
adaptively for a better estimation of the desired surface friction. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7- The membership functions for input variables x  and is  for the subcontrollers. P=Positive, PM=Positive 
Medium, PB=Positive Big, N=Negative, Z=Zero, P=Positive. 



 

 
Fig. 8- The membership functions for the output variable in subcontrollers 

 
Fig. 9- The membership functions for the input variables 1x&  and 2x&  of the surface-friction compensators. 

NB=Negative Big, NM=Negative Medium, N=Negative, Z=Zero, P=Positive, PM=Positive Medium, PB=Positive Big. 
 

 
Fig. 10- The membership functions for the output variable of the surface-friction compensator 

 
Table 1: Fuzzy rules for the subcontrollers 

PB PM P x  
is  

M7 M8 M9 N 

M4 M5 M6 Z 

M1 M2 M3 P 



 

Table 2: Fuzzy rules for the subcompensators 
1- IF ix&  is NB, THEN iy  is NB 
2- IF ix&  is NM, THEN iy  is NM 
3- IF ix&  is N, THEN iy  is N 
4- IF ix&  is Z, THEN iy  is Z 
5- IF ix&  is P, THEN iy  is P 
6- IF ix&  is PM, THEN iy  is PM 
7- IF ix&  is PB, THEN iy  is PB 
 

 
 
Although the designed controller in this paper is adaptive, but for faster convergence, the initial 

values of the adaptive parameters (the centers of membership functions for the tally part of the 
fuzzy rules) are defined using prior knowledge of the system, which is one of many advantages of 
fuzzy systems. 

The 3DoF robot manipulator, used in simulations, has the following constants: 
1 2 30.5m , 0.8m , 0.3ml l l= = =  

1 2 32kg , 1kg , 1kgm m m= = =  
Also, the following parameters have been chosen for the neuro-fuzzy controller and the neuro-fuzzy 
compensator: 

=diag{30 30 30}, =diag{0.4 0.4 0.4}K Λ  
=diag{50  50 50} , =diag{50  50 50} , =diag{10  10  10}i ii i∀ ∀Γ Φ Q  

The desired path is a circle in 1 2x x−  plane with a radius of one meter and the center of the 
origin. The end-effector must exert 10 N forces on the surface while following the desired path. The 
initial value of the adaptive parameters of the controllers has been chosen equally as follows 
(although it is worth to mention that the performance of the developed method in this paper is 
independent of the initial value of the adaptive parameters): 

[ ]1 2 3(0) (0) (0) 4 3 2 1 0 1 2 3 4 T
= = = − − − −w w w  

In order to show the adaptation ability of the proposed controller and the compensator, simulations 
have been performed for different values of stiffness coefficients of the surface, surface frictions, 
joints frictions and arms masses of the robot, and measurement noises. Figs. 11 to 18 show the 
simulation results. The changes in these parameters are 100% of their initial values occurring at 

5 s.t =  Fig. 18 shows the results for adding 10% measurement noise in position and force sensors. 
As the simulation results show, the proposed controller is perfectly capable of controlling the 

position and the applied force of the end-effector to the desired values even with large amount of 
changes in system parameters and the environment. 

To compare the performance of the proposed controller with another method, simulations have 
been performed for the same robot with computed torque method, which is dynamic dependent and 
nonadaptive [11]. The simulation results have been shown in Figs. 19 to 25. As these figures show, 
when there are no changes in the system parameters or in the environment, the controller can 
perform an excellent task with almost no steady state error. But, since the computed torque method 
is dynamic dependent, any changes in the robot parameters can create large errors, especially for 
100% increase in the arms masses it becomes unstable (Fig. 21). Moreover, due to uncompensated 
surface-friction force, any variation in surface friction may even result in separation of the end-
effector from the surface (Fig. 23). In addition, Fig. 25 shows that computed torque method is very 
susceptible to measurements noise. 



 

Also, Fig. 26 shows the changes in the parameters of one of the adaptive neuro-fuzzy 
subcontrollers, for the case of 100% increase in the arms masses. As this figure shows, the initial 
values of the adaptable weights are very close to the desired values, since these weights have been 
defined using the knowledge we have from the system. Also, as the parameters of the system 
change at t=5 s, the weights quickly adapt themselves to the changes, maintaining small amount of 
tracking errors both for the position control as well as the force. Fig. 27 indicates that the derivative 
of the Lyapunov function, defined in Eq. (33), remains negative for the case of 100% increase in the 
arms masses of the robot, meaning that the system is stable at all time. 
One important point in the simulation results is that although the fuzzy systems are universal 
approximators and are always associated with some errors, but, due to the adaptation property of the 
controller as well as the compensator, the approximation error, inherent in the fuzzy system, is 
cancelled out by continuously changing the adaptive parameters. 
Although the simulation results show very good and robust performance for the proposed method, 
there are some limitations that should be addressed: 1) the singular points in the robot work space, 
which hasn't been considered in the simulations, should be taken into account, 2) the contact surface 
was assumed to be flat and in the x1-x2 plane, which may not be the general case in practice. 
Evaluation of the proposed controller when encountering an uneven surface, in which the surface 
friction force must be decomposed into three components along three axes, will be addressed in the 
future works, 3) it was assumed that the speed of the end effector can be measured with some 
sensors. In practice, these sensors are usually associated with noise, 4) even though, measurement 
noise was considered in simulations, estimating the speed of the end effector, instead of measuring 
it, could benefit the practical applications of the proposed method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

Fig. 11- Position and force control with 100% increase in surface-stiffness coefficient 
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Fig. 12- The joint torques for the case of Fig. 8 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                    
                         
 
 
 
 
 
 
 
 

Fig. 13- Position and force control with 100% increase in arms masses 
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Fig. 14- The joint torques for the case of Fig. 10 
 
 
 
 

 
 
 
 
 
 

 
Fig. 15- Position and force control with 100% increase in joint friction 

 
 

 
 

 
 
 
 
 
 

 
Fig. 16- Position and force control with 100% increase in surface friction 
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Fig. 17- Friction forces in x1 and x2 directions (actual and estimated) 
 
 
 
 
 
 
 
 
 

 
 

 

 

Fig. 18- Position and force control with 10% measurement noise in position and force sensors 

 

 

 

 
 
 
 
 
 
 

 
 

 

Fig. 19- Position and force control with 100% increase in surface stiffness coefficient (computed torque method) 
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Fig. 20- The joint torques for the case of Fig. 16 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 21- Position and force control with 100% increase in arms mass (computed torque method) 
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Fig. 22- The joint torques for the case of Fig. 18 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

Fig. 23- Position and force control with 100% increase in surface friction (computed torque method) 
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 Fig. 24- The joint torques for the case of Fig. 20 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

Fig. 25- Position and force control with 10% measurement noise in position and force sensors (computed torque 
method) 
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Fig. 26- Adaptive weight changes of one of the controllers during operation of the robot, when 100% increase in arms 

masses occurs at t=5 s. 
 
 

 
Fig. 27- Derivative of the Lyapunov function, defined in Eq. (33), during operation of the robot, when 100% increase in 

arms masses occurs at t=5 s. 
 
 
7- Outline of the Future Work 
The direction of the future work for this paper can be outlined as follows: 

1- Performing a robustness analysis on the designed controller as well as the surface friction 
compensator. 

2- Considering singular points in the work space, when the robot is performing position/force 
control. 

3- Evaluation of the proposed controller when encountering an uneven surface, in which the 
surface friction force must be decomposed into three components along three axes. 

4- Estimating the speed of the end effector, instead of measuring it, that usually is associated 
with noises created by the speed sensor. 

 
 
8- Conclusions 
An adaptive neuro-fuzzy controller for hybrid position/force control of robot manipulators and an 
adaptive surface friction compensator was presented in this paper. In addition, an on-line estimator 
was designed for adaptive computation of the stiffness coefficient of the surface. The proposed 
algorithms were designed to be independent of the robot dynamics, resulting into an exceedingly 
robust closed loop system. This is because, the adaptation law of the free parameters is based on the 
Lyapunov stability theory. The other advantage of the proposed method is the simple structure of 
the controller and the compensator. There are only 9 and 7 fuzzy rules for every subcontroller and 
every subcompensator, respectively, making it a very fast and appropriate method for different 
applications of robot manipulators. Moreover, it was proved that the adaptive parameters are 



 

convergent under the proposed method. Simulation results showed good performance of the 
proposed controller even for some large changes in the robot dynamics as well as the surface 
parameters as compared with computed torque method.  
Although the paper addresses the position/force control of robot manipulators with three DoF, but 
the proposed method can be easily extended to other manipulators with different DoF. Moreover, 
due to the adaptive neuro-fuzzy modeling, both for the controller and the friction compensator, the 
proposed method is independent of the robot dynamics as well as the conditions of the environment. 
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