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Abstract- In this paper, an adaptive control method based on neural networks for controlling parallel hybrid electric vehicles is 
presented. Power sharing between the internal combustion engine and the electric motor is the key point for efficient driving. The 
control strategy will be implemented using a neural network. The controller will be designed based on powertrain desired torque 
and state of charge of batteries. The output of controller adjusts the fuel throttle angle in combustion engine. The main contribution 
of this paper is development of an on-line controller based on neural networks, which maximizes the output torque of engine while 
minimizing fuel consumption. In other words, a compromised solution between torque and fuel can be achieved. Also, state of 
charge of the batteries, which has been estimated by the Ampere-hour counting technique, has been considered. Simulation results 
show good performance of the proposed controller as compared to off-line-trained adaptive controllers. 
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1    Introduction 
 
Since 1990s, a large number of automobile industries have started developing Hybrid Electric Vehicles (HEVs). This 
is due to the drawbacks inherent in conventional Internal Combustion Engine (ICE) vehicles as well as Electric 
Vehicles (EVs). In fact, the exhaust emissions of ICE vehicles are the major source of urban pollutions and should be 
replaced by clean and high efficient vehicles. Although EVs with no emissions attracted the attention of many car 
industries for a few decades, but many problems like short driving distance, long recharging time of batteries, and 
high costs, gave strong motives to develop HEVs. 
 

There are two kinds of HEVs: 1) series and 2) parallel. In series HEVs, the powertrain, like EVs, is provided by an 
electric motor. But, there is a small ICE, which charges batteries when state of charge of them is below certain level. 
On the other hand, in parallel HEVs, which are the most popular and are considered in this paper, the powertrain is 
provided by two sources (i.e. by both ICE and electric motor) that are coupled mechanically together. One important 
issue in parallel HEVs is the amount of torque produced by these powertrain sources in different driving conditions. 
The contribution of ICE and electric motor in different driving conditions are defined as follows [Husain]: 

- In general, when the required torque is more than the maximum torque of ICE, the electric motor covers the torque 
difference. 

- Below a certain velocity of vehicle or when the vehicle stands still, the electric motor provides the entire required 
torque, since ICEs have low efficiency in these situations. 

- When the state of charge of batteries is low, in addition to driving the vehicle, ICE provides the required energy 
for charging batteries. In this case, electric motor works as generator and charges batteries. 
 

Operation style of each source (i.e. ICE or electric motor) and the amount of their contribution in producing the 
required torque at any time is determined by a controller. Moreover, this controller should minimize the fuel 
consumption. But, minimizing fuel consumption could lead to a considerable torque reduction, which may not yield a 
very pleasant driving. Therefore, in addition to fuel minimization, sometimes it is necessary to maximize the torque as 
well. That is, although PHEVs have been designed for fuel economy and reducing air pollution, but they must meet 
some minimum requirements from drivers, especially in cases like car racing, torque maximization plays a very 
important role. 
 
1.1    Literatures on Fuel Minimization 
Powel et al. have used a combination of several PID controllers, one for every section of vehicle, due to the highly 
nonlinear system. But the fuel consumption is relatively high [Powel 1998]. Lyshevski et al. have derived a nonlinear 
control method based on Lyapunov stability theory. They have achieved smoother control signals as compared to 
[Powel 1998], but the fuel consumption is still high [Lyshevski et al. 1998] [Lyshevski 1999]. Lin et al. have 
employed dynamic programming, which a sequential decision making method, to minimize fuel consumption of 
hybrid vehicles [Lin 2001].  
Delprat et al. have used classical optimal control methods to achieve minimum fuel consumption for a given speed 
cycle [Delprat 2002]. Optimal control methods usually require a precise model of the system. In [??] Schouten et al. 
and in [??] Cerruto et al. have designed a fuzzy controller with 9 and 27 rules, respectively to control hybrid vehicles. 
Fuzzy controllers need expert knowledge; and when number of inputs and the corresponding membership functions 
increase, the curse of dimensionality in fuzzy rules makes the fuzzy controllers not viable. Ippolito et al. have used 
fuzzy c-means along with genetic algorithms for power flow management (e.g. the contribution of electric motor and 



ICE) in different driving cycle of hybrid electric vehicles [Ippolito 2003]. In their method, there is need for some off-
line tests from hybrid vehicles; but they have achieved relatively low fuel consumption and smooth simulation results. 
Berenji and Ruspini have applied Takagi-Sugeno-Kang fuzzy systems to hybrid electric vehicles as multiobjective 
control problem [Berenji and Ruspini 1996]. They have proposed an algorithm to automatically generate fuzzy rules. 
A major advantage of their method is the ability of on-line training for controller. Low fuel consumption and 
smoothness in their results can be observed. Sacks and Cox have proposed neuro-adaptive controllers [Sacks and C. 
Cox 1999]. Major advantages of neuro-adaptive controllers in vehicles are robustness to different driving and road 
conditions, change in tire dynamics, and load torques. 
 
1.2     Literatures on Torque Maximization 
Lee et al. have used fuzzy systems, a fuzzy predictive controller with 9 rules for converting driver’s commands to 
appropriate torques and another fuzzy controller with 25 rules for power balance, in hybrid electric vehicles [Lee and 
Sul 1998], [Lee et al. 2000], and [Koo et al. 1998]. Maximizing torque alone can lead to high fuel consumption. 
Moreover, variations in state of charge of batteries are relatively high, which reduces the life time of batteries. 

As far as the authors of this paper have seen, all papers in literatures have considered either minimization of fuel 
consumption, or maximization of torque production. 

One way to maximize output torque of PHEVs is to maximize the output torque of ICE. This is mainly due to the 
fact that PHEVs are designed in such a way that when driver demands high torques, the ICE provides its maximum 
torque; the remaining required torque is provided by the electric motor. 

In this paper, we try to find a compromised solution between fuel consumption and torque production by designing 
an adaptive neuro controller. The adaptation process is performed on-line, which makes the closed-loop system more 
robust against disturbances and changes in the system parameters. Moreover, two optimization parameters will be in 
user’s hand to choose appropriate weights ranging from just fuel minimization to only torque maximization.  
 

Simulation results demonstrate very good trade off between fuel minimization and torque maximization. In other 
words, a good compromised solution has been achieved using the proposed method in this paper. Also a comparison 
between the on-line and off-line neuro controllers shows the satisfactory performance of the proposed controller, 
especially when encountering disturbances or changes in driver’s demands and road conditions. 
 In the rest of this paper, section 2 describes the model of the system and an introduction to ADVISOR software 
that we have used for modelling. Section 3 explains the proposed controller in this paper. Simulation results are 
presented in section 4, followed by their comparisons with the simulation results of off-line controllers, in section 5. 
Finally, conclusions will be presented in section 6.  

    
 
2.     PHEV Model 
In simulations, we will use ADVISOR1 2002 software [ADVISOR 1]. This is powerful software for simulation of all 
kind of vehicles, such as conventional, electrical, series hybrid, and parallel hybrid. It runs in MATLAB/SIMULINK 
environment. This software was first introduced by NREL2 in 1994 followed by several new versions. Ever since the 
introduction of this software, it has been used by many researchers in automotive industries and research centres.  

ADVISOR consists of several blocks, each representing a particular part of vehicle, such as engine, electric motor, 
batteries, gearbox, clutch, controllers, and exhaust system. The models of different parts of vehicles in ADVISOR are 
quasi-static. That is, data have been collected in steady state (e. g. constant torques and speeds), and then have been 
corrected for transient effects such as the rotational inertia of drive train components [ADVISOR 2]. Also, different 
driving cycles can be defined in this software. 
 

 
Figure 1      The block diagram of a PHEV and its controller, in ADVISOR. 

 
                                                 
1 ADvanced VehIcle SimulatOR 
2  National Renewable Energy Laboratory 



3.     Design of Adaptive Controller 
The controller has two inputs: the load torque and the SOC of the battery pack. The ICE operation point (i.e. the 
throttle angle of engine) is adjusted based on these inputs. The desired electric motor torque can be calculated as 

EM_Desired load ICE_SetT T T                                                (1) 

where loadT  is the load torque, and ICE_SetT  is the desired torque of the ICE, defined by the controller. As it was 

mentioned before, in order to achieve a compromised solution between three goals (namely, maximizing fuel 
economy, reducing vehicle output emissions, and maintaining acceptable powertrain performance by maximizing the 
vehicle output torque), an adaptive Multi-Layer Perceptron  (MLP) controller with on-line learning method will be 
designed. The adaptation law is the back-propagation algorithm to update the weights of the neural network, in such a 
way to achieve the above goals. The adaptation law for changing weights is 
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where  is the learning rate and 
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is the instantaneous error, in which we define the error function to train the neural network as 
   1 2 MINMAX( )e k T T fuel fuel                             (4) 

where fuel is the consumed fuel by ICE per time unit, T is the output torque of ICE, MINfuel  is the desired fuel 
consumption designated for fuel minimization, MAXT  is the desired output torque of ICE, chosen to maximize the 
output torque, and 1  and 2  are the weighting factors for output torque and fuel consumption, respectively. 
The block diagram of the proposed method is presented in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2    Block diagram of the proposed controller for PHEV. 
 
4.     Simulation Results 
For simulations a Multilayer Perceptron with one hidden layer containing 10 neurons, and the training 
coefficient 0.3   has been used. Moreover, it has been assumed that MIN 0.14fuel   (i.e. the ratio of fuel mass to 
the air mass, consumed by ICE), which is the minimum fuel consumption defined in ADVISOR, and is called fuel-
mode controller. Also, MAX 45 NmT  , which is the maximum torque ICE can produce.  

    In ADVISOR, there are two different control methods: 1) fuel minimization (or fuel-mode) controller for 
minimizing the fuel consumption and 2) efficiency-mode (eff-mode) controller for maximizing the output torque 
[ADVISOR 2]. The simulation results will be compared with these two benchmark methods. 
    As it was mentioned before, there are two weighting factors for adaptive neuro-controller ( 1  and 2 ). In the 
following sections, first, it is assumed that 1 2 1   . That is, both fuel minimization and torque maximization 
are equally important for the driver. Then, only fuel minimization will be considered (i.e. 1 0   and 2 1  ). 
Finally, it is assumed that 1 1   and 2 0  , which stands for output torque maximization of ICE. In other words, 
in this case, no fuel minimization has been taken into account. This situation can occur in cases like racing. 
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4.1    Fuel Minimization and Torque Maximization (α 1 = α 2 = 1) 

By selecting α 1 = α 2 = 1, we will get a compromised or optimal solution between fuel minimization and ICE output 
torque maximization. The desired trajectory for vehicle speed is shown in Figure 3. In this driving cycle, at the instant 
of t =20 s, a large acceleration is asked by the driver, followed by pressing the break pedal at t =295 s. In this cycle, 
the vehicle covers a distance of 6.4 Km in 329 seconds. The error between the desired speed and the actual speed will 
be converted to the desired torque using a PI controller. This difference must be compensated by the vehicle 
powertrain system. Figure 4 shows the error between the desired and the actual vehicle speed, which is in the order of 
10-11. 
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Figure 3    The desired vehicle speed and the actual vehicle speed. 

 
 

0 50 100 150 200 250 300 350
-1

-0.5

0

0.5

1

1.5

2 x 10-11

ve
hi

cl
e 

sp
ee

d 
er

ro
r (

km
/h

)

time (s)  
Figure 4     The error between the desired and the actual vehicle speed. 
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Figure 5     SOC of batteries 
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Figure 6    Vehicle emissions for the proposed controller 
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Figure 7     Fuel consumptions 
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Figure 8     ICE output torques 

 
Table 1     Comparison between the adaptive neuro controller, fuel-mode controller, and eff-mode controller 

Control 
Method 

Fuel 
Consumption 
(L/100Km) 

Integral of 
Torque 
(Nms) 

HC 
(grams/Km) 

CO 
(grams/Km) 

NOx 
(grams/Km) 

fuel-mode 4.4 8000 0.447 2.196 0.228 

neuro 
controller 4.8 10640 0.545 2.387 0.406 

eff-mode 5.2 12274 0.618 2.299 0.51 

 



Moreover, the SOC of batteries shows very small changes, resulting in longer life-time of batteries (Figure 5). In 
addition to that, exhaust emissions for the proposed controller can be observed in Figure 6.  
   Comparing the results of adaptive neuro controller with the results of two control modes in ADVISOR (i.e. fuel-
mode and eff-mode) reveals a good performance for the proposed controller. The fuel consumptions for neuro 
controller and two ADVISOR controllers are shown in Figure 7. Also, Figure 8 shows the ICE output torques. As it is 
obvious from this Figure, adaptive controller exhibits smoother output torque, which gives less tension to the engine 
parts. Table 1 presents fuel consumptions, integral of ICE output torques, and vehicle emissions, for different 
controllers. 
 
4.2    Fuel Minimization (α 1 = 0 and α 2 = 1) 
Ignoring the effect of torque maximization in performance measure (3), a solution based only on fuel minimization 
will be obtained. The absolute error between the fuel consumption and the minimum fuel requirement is shown in 
Figure 10. Moreover, as Figure 11 shows, the fuel consumption for the proposed method in this paper almost 
coincides with the optimal fuel-mode controller in ADVISOR, meaning that the adaptive neuro controller can find an 
optimal solution in every case, chosen by the driver. Table 2 shows fuel consumptions, integral of ICE output torques, 
and vehicle emissions for different controllers. One observation from this table is that, although fuel consumption by 
the neuro controller is slightly higher than that of fuel-mode controller, but the produced torque, and HC and NOx 
emissions are better than those of fuel-mode controller. 
 
4.3   Torque Maximization (α 1 = 1 and α 2 = 0) 
Now, the goal of the optimization problem is to maximize the ICE output torque. That is, no fuel minimization will be 
taken into account. This can be achieved by choosing weighting factors in (4) as α 1 = 1 and α 2 = 0. This case is 
important for driving in special situations, such as racing, where fast accelerations are needed. Figure 12 shows the 
absolute of error between the ICE torque and maximum ICE torque. The ICE output torque for different controllers 
has been shown in Figure 13. As this Figure shows, the ICE output torque for the proposed controller is even better 
than the eff-mode controller. Moreover, and more importantly, the torque produced by the neuro controller is 
smoother that that of eff-mode controller or fuel-mode controller. Table 3 shows the fuel consumption, the integral of 
ICE torque, and the amount of vehicle emissions. As this table shows, adaptive neuro controller provides more output 
torque than eff-mode. Moreover, the emissions are almost the same for the proposed controller and the eff-mode, even 
though MLP controller consumes slightly higher fuel. 
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Figure 10    Error between the fuel consumption and the minimum fuel requirement for the neuro controller. 
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Figure 11  The fuel consumptions 



 
Table 2    Summary of fuel consumptions, integral of ICE output torques, and the vehicle emissions, when the adaptive neuro 

controller performs only fuel minimization 

Control 
Method 

Fuel 
Consumption 

(L/100km) 

Integral 
of Torque 

(Nms) 

HC 
(grams/km) 

CO 
(grams/km) 

NOx 
(grams/km) 

fuel-mode 4.4 8000 0.447 2.196 0.228 

neuro  
controller 4.5 8700 0.421 2.306 0.189 

eff-mode 5.2 12274 0.618 2.299 0.51 
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Figure 12 Error between the ICE torque and maximum ICE torque for neuro controller,  

when the vehicle is carrying 1200 kg load. 
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Figure 13     The ICE output torques 

 
 

Table 3    Summary of fuel consumptions, integral of ICE output torques, and vehicle emissions, when the adaptive neuro 
controller performs only torque maximization 

Control 
Method 

Fuel 
Consumption 

(L/100km) 

Integral of 
Torque 
(Nms) 

HC 
(grams/km) 

CO 
(grams/km) 

NOx 
(grams/km) 

fuel-mode 4.4 8000 0.447 2.196 0.228 

neuro 
controller 5.6 14000 0.599 2.228 0.562 

eff-mode 5.2 12274 0.618 2.299 0.51 

 



4.4    Load Increase 
In this section we evaluate performance of the proposed controller and two controllers in ADVISOR against load 
increase. It is assumed that the vehicle is carrying a load equal to 1200 kg. Figures 14-18 show the SOC of batteries, 
fuel consumption, and ICE output torques. These Figures also have been summarized in Table 5. The adaptive neuro-
controller exhibits smoother torque curve as compared to fuel-mode controller and consumes less fuel as compared to 
eff-mode controller. 
 

 
Figure 14    SOC of batteries 

 
 

 
Figure 15     Fuel consumptions 
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Figure 16     The ICE torque for adaptive neuro-controller 
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Figure 17     The ICE torque for fuel-mode controller 
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Figure 18      The ICE torque for eff-mode controller 

 
Table 5      Fuel consumptions and the integral of ICE torques, for 1200 kg load increase in vehicle cargo weight 

Control 
Method 

Fuel Consumption 
(L/100km) 

Integral of Torque 
(Nms) 

fuel-mode 5.3 10840 

neuro controller 6 11305 

eff-mode 7.1 13000 

 
 
4.5    Speed Profile for Cities 
Previous simulations were performed for speed profile shown in Figure 3. Now, the proposed controller will be tested 
for a different speed profile, which has been shown in Figure 19 and can be considered as a vehicle speed profile for 
cities. In this driving cycle, the vehicle will cover 1.9 km distance in 600 seconds.  
The fuel consumption by three controllers is shown in Figure 20. Also, the ICE output torques are shown in Figures 
21 to 23. Table 6 summarizes these Figures. Comparing adaptive neuro controller with fuel-mode controller shows 
that the proposed controller consumes 7.7% more fuel, but produces 64% more torque. Also, comparing with eff-
mode controller it can be seen that the neuro controller consumes 20% less fuel, and generates 18% less torques. 
Based on these, one can conclude that the adaptive neuro controller can find an optimal solution between fuel 
consumption and torque generation. Moreover, the neuro controller produces a torque profile with less number of 
maximums and minimums, as it is shown in Figure 21, which produces less stress and wears on mechanical parts of 
vehicle. 
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Figure 19    Vehicle speed cycle, similar to a city-speed profiles 

 

 
Figure 20     Fuel consumptions 
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Figure 21     The ICE torque for the proposed adaptive neuro controller 
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Figure 22     The ICE torque for the eff-mode controller 
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Figure 23     The ICE torque for the fuel-mode 

 
 

Table 6      Fuel consumptions and Integral of ICE torques, for a driving cycle similar to cities speed profile. 

Control 
Method 

Fuel Consumption 
(L/100km) 

Integral of Torque 
(Nms) 

fuel-mode 11.7 7500 

neuro controller 12.6 12280 

eff-mode 15.7 15000 

 
 
 

5      Conclusions 
In this paper a control method for finding an optimal solution between fuel minimization and torque maximization 
was proposed for parallel hybrid electric vehicles. For this reason, an adaptive neuro controller was designed and used 
in ADVISOR software. Simulation results were compared with two different control strategies in ADVISOR, one for 
fuel minimization and the other one for torque maximization. The proposed method provides very good solutions for 
different speed cycles as compared with these two controllers in ADVISOR. That is, the neuro controller finds a 
compromised solution. Moreover, it was shown in simulations that the proposed controller is robust against changes 
in system parameters, such as load increase. In addition to that, the exhaust emissions were acceptable and almost as 
low as the fuel-mode in ADVISOR. In the continuation of this research we proposed to make some analytical work in 
the proposed controller, such as conditions for convergence of adaptive weights in neuro controller. 
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