
 1 

 
 
 

Adaptive intelligent speed control of switched 
reluctance motors with torque ripple reduction 

 

Majid Hajatipour†,   Mohammad Farrokhi†‡* 
†Faculty of Electrical Engineering,  

‡Center of Excellence for Power System Automation and Operation, 
Iran University of Science and Technology,  

Narmak, Farjam St., Tehran 16846-13114, Iran 
 

  
Abstract 
    Switched Reluctance (SR) motors have a wide range of applications in industries, mainly 
due to the special properties of this motor. But, because of its dynamical nonlinearities, its 
control is complex. This paper presents an adaptive intelligent control based on the 
Lyapunov stability theory to control the speed of SR motors with good accuracies and 
performances. The proposed controller composes of a speed controller and a torque 
controller. The main parts of the speed controller are two folds: a) the optimal controller, 
which is based on the Hamilton-Jacobi-Bellman theory and b) the intelligent controller, 
which is an adaptive fuzzy controller. The main features of the proposed speed controller 
are: 1) its independence to the exact parameters of the SR motor such as the inertia of rotor, 
the viscous friction, and the load torque, and 2) the robustness to inaccuracies and 
disturbances. Moreover, the torque ripple reduction is achieved by employing a neural 
network for torque estimation. The simulation results show good performance of the 
proposed controller in speed controlling and torque ripple reduction.  
Keywords: Switched reluctance motor; Velocity control; Torque ripple reduction; Adaptive 
fuzzy control 
 
1. Introduction 

Switched reluctance (SR) motors have very interesting characteristics such as simple 
structure, low costs, simplicity of the power converter, and fault tolerance. Moreover, SR 
motors can produce high torque at low speeds. These characteristics have made the SR 
motors attractive for industrial applications [1-4]. Nevertheless, SR motors have highly 
nonlinear and dynamical behavior which makes them difficult to control. Hence, the classic 
linear control methods cannot provide satisfactory performances as required by the variable 
speed regulation and the position tracking. 

In [5] and [6] the sliding-mode control has been applied for the position and speed 
control of SR motors. The main advantage of this kind of controller is its independence to 
the motor parameters, but due to employing derivative of the error in the sliding surface, it 
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is sensitive to the input noises and disturbances. In [7], with combination of PID and feed-
forward controller, variation of speed around the operation point is reduced and 
consequently mechanical vibration is cancelled. But, there is a steady-state error in position. 
In [8] speed control of SR motors is achieved by utilizing feedback linearization method. 
To avoid model dependency of the controller, the authors have employed robust feedback 
linearization. In [9], an adaptive neuro-fuzzy controller is used as the speed and torque 
controller. The main duty of the fuzzy controller is to provide a compensated current signal 
for each phase. For this reason, the fuzzy system must be trained offline. In [2], a passivity-
based method is used. The drawback of this method is that the desired phase current 
depends on the mathematical modeling of the motor and hence, there is need for numerical 
solutions. In addition, calculation of the desired torque needs numerical values for the 
inertia constant and the load torque. Moreover, the closed-loop stability in presence of the 
parameters errors has not been considered. 

The proposed controller in this paper consists of two parts: the speed controller and the 
torque controller. The speed controller is an intelligent optimal controller, based on the 
Lyapunov stability theory. The speed controller itself has two main parts: 1) an adaptive 
intelligent controller, which is a fuzzy system that cancels out the effects of uncertainties 
and unknown parameters such as errors in the moment of inertia, viscous friction, and load 
torque and 2) an optimal controller, which forces the output to track the target. In other 
words, by utilizing a fuzzy system, the effects of unknown parameters in dynamical 
equation of the mechanical system are rejected and the model is simplified to a linear 
equation with known parameters. Then, an optimal control strategy is used. The output of 
the speed controller is the torque reference signal, which is the input to the torque 
controller. In the torque controller, reference signal will be compared to the estimation of 
the motor torque for torque ripple reduction. For this reason, a Neural Network (NN) is 
used to estimate the motor torque. The NN is trained with the data obtained from the Finite 
Element Method (FEM) when the motor is operating in the linear as well as in the 
saturation regions. Hence, the saturation effects in the iron core of the motor are considered. 

The main advantages of the proposed method are: 1) its independence to the exact 
parameters of the SR motor such as the moment of inertia of rotor and viscous friction 
coefficients, 2) good performance in presence of the uncertainties, measurement noises, and 
disturbances, 3) smooth torque reference signal provided by the speed controller, and 4) 
torque ripple reduction by using neural networks. In addition, this controller is independent 
of the load torque. Performance evaluation of the proposed controller is shown through 
simulations using a nonlinear model of the SR motor, in which the saturation effects in the 
iron core are considered. Moreover, the applied voltage to the motor phases is of PWM 
(Pulse Width Modulation) type signal, which is common in industrial applications. 
Simulation results show good performance of the proposed controller. 

This paper is organized as follows: First, in Section 2, a brief introduction of the SR 
motor will be given. Section 3 represents the proposed speed control method. The design of 
the torque controller will be presented in Section 4. Section 5 demonstrates the simulation 
results. Finally, conclusion and future works are given in Section 6. 
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Fig. 1. Structure of a 6/4 SR motor. 

 

 
Fig. 2. Phase inductance variations with respect to the rotor position for different values of the phase current. 

 
2. The SR motor 

Fig. 1 shows the structure of a typical SR motor. This is a salient pole synchronous 
machine with no windings or permanent magnet on the rotor. The relationship between the 
voltage ( kV ), the current ( ki ) and the flux linkage ( kψ ) for the kth phase of motor is [10] 

, 1, 2, , .k
k k

dV R I k m
dt
ψ

= + = …                                                                             (1) 

And the instantaneous generated torque is defined as 

         
0

( , ) ,
i

k kk i diT λ θ
θ
∂

=
∂ ∫                                                                                             (2) 

where ( , )k kiλ θ  is the linkage flux of the stator phase and θ  is the position of rotor. 
Neglecting the saturation effects in the iron core, the torque produced by the kth phase can 
be simplified as 
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2
k

k k
L

T i
∂
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θ
θ

                                                                                                   (3) 

where ( )kL θ  is the kth phase inductance. Fig. 2 shows variations of the phase inductance 

Inductance

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0 5.4 12.6
19.8
27 34.2
41.4
48.6
55.8
63 70.2
77.4
84.6

Position (degree)

H

8 A  
6 A  

4 A  2 A  
0 A



 4 

with respect to the position of rotor and variations in the phase current. As this Fig. shows, 
the phase inductance decreases when the phase current is increased. This is the indication of 
saturation effects in the iron core. The saturation effect is a nonlinear behavior and makes it 
difficult to control the speed of motor. 

 
The relationship between the mechanical and the electrical parts of the SR motor can be 
written as [10] 

1
( , )

m

k k l
k

J T I Tθ θ βθ
=

= − −∑&& &                                                                                           (4)  

where lT  is the load torque, ( , )k kT Iθ is the generated phase torque, &θ  is the angular velocity 
of rotor, J is the moment of inertia, β  is the viscous friction coefficient, and m is the 
number of phases in stator. 
 
3.  Speed Control Strategy 

In this section, the proposed strategy for speed control of the SR motor is described. Fig. 
3 shows the block diagram of the proposed controller. The main goal of this controller is to 
provide the appropriate control signal (i.e. the reference torque) to the torque controller, 
based on the difference between the desired speed and the actual speed of the motor. In the 
speed control part, the task of the fuzzy system is to adaptively reject the unknown and 
uncertain parameters in the SR motor and in the load torque. By using this adaptive fuzzy 
system, the mechanical dynamics of the SR motor become linear and known. Subsequently, 
after simplifying the SR motor model, the Hamilton-Jacobi-Bellman theory (an optimal 
control method) is employed to force the tracking error to go to zero. 

The position error of the motor is defined as ( ) ( )m t te = −θ θ θ , where ( )m tθ  is the 
reference position signal. A new variable is defined as [11] 

( ) ( ) p ir t e t k e k e dtθ θ θ= + + ∫&                                                                                       (5)  

Then, using ( ) ( )m t te = −& &&θ θ θ  and (5), it gives 

( ) ( ) ( )m p it r t t k e k e dtθ θθ θ= − + + + ∫& &&                                                                           (6) 
Therefore, 

( ) ( ) ( ) .m p it r t t k e k e= − + + +&& &&& &θ θθ θ                                                                              (7) 
It should be mentioned that in the design procedure for the speed controller, the total torque 

produced by each phase, which is shown as 
1

( , )
m

k k
k

T Iθ
=

∑  in (4), must be determined by the 

speed controller. This signal acts as the control signal for the speed controller. From now 
on, for simplicity, totalT will be shown by T.  Substituting (7) and (6) into (4) yields 

( ) ( ) ( ) ( )1 1 ( ) ,l m p i m p ir t T r t T k e k e dt t k e k e dt
J J θ θ θ θβ βθ β β θ = − − + + + + + + +     ∫ ∫& &&& &          

(8) 
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Fig. 3. Block diagram of the proposed speed and torque controllers. 
 
where ( )1

,m
k kk

T T I
=

= ∑ θ  is the total produced torque. Here, J and β  can be an 
approximation of their actual values. Therefore, an approximation error term should be 
added inside the second bracket of (8). Let define 

( ) ( ) ( )( ).m p m pl i ih T k e k e dt J t k e k e dt= + + + + + +∫ ∫x,υ & && &θ θ θ θβ β βθ θ                 (9) 

Hence, (8) reduces to 

( ) ( ) ( )1 1 , ,r t T r t h
J J

β= − − +   x υ&                                                                             (10) 

where 
T

e dt e e eθ θ θ θ
 =  ∫x & &&  is the state vector and υ  is the vector of uncertainties and 

unknown parameters. Control signal of the speed controller (i.e. the total reference torque) 
is selected such that 

( ), ,T h u= +x υ                                                                                                             (11) 

Here, the adaptive fuzzy system is designed to approximate ( ),h x υ , and the signal u will be 
determined by the optimal control method. Then, using (10) and (11), the model can be 
simplified as 

   ( ) ( ).J r t u r tβ= − −&                                                                                                  (12)  
It shows that if the torque signal is generated as in (11), then the SR motor model will be 
simple and linearized. In other words, if the fuzzy system provides the exact solution to the 
unknown function ( ),h x υ , then the SR motor model with all uncertainties is linearized and 
simplified as in (12), and can be easily controlled by the optimal control methods.  

Phase Current
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Next, using (5) and (12), and defining a new state-space variable ( ) [ ]( ) ,T
t e dt e r t= ∫Z% θ θ  

the state-space equations can be written as  
0 1 0

1

10 0

0.
0 ,

( ) ( )

k ki p

J J

e e dt
e e u
r t r t

 
 
 
 
 
 

− −

−

    ∫
    = +     
     −     

&
&

θ θ

θ θ
β

                                                         (13) 

or in vector-matrix notation form as 
( ) ( ) ( ).u ut t u t= +Z ZA B&% %                                                                                               (14) 

It is important to define constants k i and k p  such that uA  is a stable matrix (i.e. all its 

eigenvalues have negative real part). 
Hence, if ( ),h x υ  is exactly provided by the adaptive fuzzy system, then the unknown and 
nonlinear model of SR motor can be simplified as in (13), which is linear with known 
parameters. Then, the optimal control method can be used for tracking with zero error. In 
the next subsections, details of the adaptive fuzzy and optimal controllers are given. 

 
3.1. Optimal Controller Design 

Using the defined dynamics in (13) and using the Hamilton-Jacobi-Bellman method [12], 
the optimal input u(t) can be obtained such that the following cost function is minimized: 

( ) ( ) ( ) ( )
0

1 1
2 2

,
ft

TTI t t u t Ru t = +  ∫ Z QZ% %                                                                    (15) 

where 3 3×∈ℜQ is a positive definite matrix and R  is a positive constant. Then, the optimal 
cost function is chosen as [12] 

( )( ) ( ) ( ) ( )* 1, ,
2

TI t t t t t=Z Z K Z% % %                                                                            (16) 

where ( )tK  is 

0 01
0 02
0 0 3

( ) .
k

k

k

t

 
 
 =
 
  

K  

Then, the optimal control input ( )u t∗  is 

( ) ( ) ( )* 1 .T
uu t R t t−= − B K Z%                                                                                    (17) 

The matrix ( )tK  is the solution of the following Riccati equation: 
1 0.T T

u uR −+ + + − =A K KA K Q KB B K&                                                                   (18) 
Up to this point, it was assumed that the fuzzy system could exactly model the unknown 
function ( ),h x υ . But as it is well known, fuzzy systems can only give an approximation to 
unknown functions; therefore, there exists approximation errors. This issue will be 
addressed in the next section, where the design of fuzzy system is given.  
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3.2.Intelligent Controller Design 
The TSK1 fuzzy system block, shown in Fig. 3, is a zero-order Sugeno fuzzy system. It 

consists of a set of fuzzy IF–THEN rules in the following form [13]: 
  1 1: ,ˆRule IF is and is , THENandi i i

n n ix A x A h σ=L                                   (19) 

where 1 , ...,i i
nA A  are fuzzy sets and iσ  is a singleton number for the ith rule. By using the 

product inference engine, the centre-average defuzzifier and the singleton fuzzifier, the 
output of the fuzzy system can be expressed as [13] 

( ) 11

11

( )
ˆ ,

( )

i
j

i
j

p n

i jAji
p n

jAji

x
h

x

σ µ

µ

==

==

 
  =

 
  

∏

∏

∑

∑
x                                                                                     (20) 

where ( 1, , )i nix = …  are inputs to the fuzzy system, ˆ( )h x  is the output of fuzzy system, 

( )i
j

jA xµ  ( 1, 2, , ,i p= … 1, 2, , )j n= …  are the membership functions for fuzzy sets 

i
jA , respectively, and p is the number of fuzzy rules. Equation (20) can be written in vector 

notation form as ( ) ( )ˆ Th =x σ ξ x , where T
1

T

pσ σ =  σ L is a vector containing the 
adjustable parameters (i.e. the parameters in the consequent part of the fuzzy rules, given in 

(19)), and 1
T

p 
 =ξ Lξ ξ , in which kξ  ( 1, 2, , )k p= …  are equal to 

   1

11

.
( )

( )

i
j

i
j

n

jAj
pk n

jAji

x

x

µ
ξ

µ

=

==

=
 
 
 

∏

∏∑
                                                                                         (21) 

In this paper, inputs to the fuzzy system are ( )r t  and eθ . The role of this fuzzy system 

is to approximate ( )h x,υ , which was defined in (9). In other word, the fuzzy system is 
expected to give a good estimation of the unknown parameters and uncertainties in the 
model of the SR motor. Hence, considering some approximation errors for the fuzzy 
system, it yields [14] 

( ) ( ) ( ), ,Th ε= +x υ σ ξ x x                                                                                          (22) 

where ( )xε is the approximation error. It is assumed, in this paper, that this error is 

bounded. I.e. ( ) Mε ε≤x , where Mε  is a positive number. Therefore, the output of the 

fuzzy system can be written as 
( ) ( )ˆ ˆ, .Th =x υ σ ξ x                                                                                                    (23) 

For disturbance rejection, a robust term su  can be added to the control signal [15]. Hence, 
the control signal of the speed controller becomes 
 

1 Takagi-Sugeno-Kang 
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( ) *ˆ ,T
sT u u= + +σ ξ x                                                                                              (24) 

where the robust term su can be calculated as [16] 
( )
( ) ( )( )sgn ,s z z

r t
u r t

r t
κ κ= =                                                                                 (25) 

in which sgn( ( )) 1r t =  if ( ) 0r t > , sgn( ( )) 1r t = −  if ( ) 0r t < , and zκ  is a positive constant. 
In order to reduce the chattering effects, sgn( ( ))r t  can be replaced by sat( ( ))r t  [16].  
Next, the effect of model disturbances is considered. Substituting (22), (23), and (24) into 
(10), and denoting the external disturbances with dτ , it gives 

  ( ) ( ) ( ) ( )* ,T
sdJ r t u r t u= − − + + −σ ξ x x& % β ε τ                                                    (26)  

where * ˆ= −σ σ σ% , in which *σ  is the optimal value of σ , and ( )xε  is the approximation 
error of the fuzzy system, which is assumed to be bounded. Therefore, using (13), (14) and 
(26), the state-space equation can be rewritten as 

( ) ( )* .T
u u sdu u 

 = + − − − +Z A Z B σ ξ x x&% % % ε τ                                                   (27) 

Hence, the main goal in the speed controller is to develop an algorithm to find σ̂  and su  

such that σ%  and Z%  (i.e. both the estimation error and the tracking error) remain bounded 
and as small as possible. To achieve this, an algorithm, based on the Lyapunov stability 
theory, will be proposed in the next section. 
 
3.3.The Adaptation Law 

In this section, the adaptation law for the fuzzy variable σ̂  is introduced such that the 
closed-loop stability is guaranteed. But, first, some definitions are in order. 
Definition: Given matrixes A and B, the Frobenius norm is defined as 

( )tr T
F =A A A with ( )tr ⋅  as the trace operator. The associated inner product 

is F tr( ), T= A BA B .  
 
Lemma: The Frobenius norm is compatible with the two-norm such that 

22 F
≤Ax A x with m n×ℜ∈A  and nℜ∈x [17].  

Theorem: Consider the nonlinear SR motor model presented in (4) and (10), and assume 
that the intelligent optimal control is as in (24). Then, the following adaptation 
law, for updating the parameters of the fuzzy system, guarantees the stability of 
the closed-loop system: 

  ( )ˆ ˆ.T
u κ= − −σ Fξ x B KZ Z σ& % %                                                                 (28) 

where T
n n×= >F F 0 is a diagonal matrix and adjusts the rate of convergence for 

the fuzzy parameters (in the simplest case, this matrix can be an identity matrix), 
and 0κ > .   
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Proof: Let define the following Lyapunov function:  

 ( )11 1 tr .
2 2

T TV −= +Z KZ σ F σ% % % %                                                                                    (29) 

The time derivative of V becomes 

( )11 tr .
2

T T TV −= + +Z KZ Z KZ σ F σ& && % % % & % % %                                                                         (30)  

Substituting (18) and (27) into (30) yields 

( ) ( ){ }
( )1

1
2

tr .

T T -1 T T T T
u u u u d s

T

V R uε τ

−

= − + + − − − +

+

Z KA Z Z KB B KZ Z KZ Z KB σ ξ x x

σ F σ

& % % % % % & % %

&% %
   (31) 

Using the Riccati equation (18) and considering that { }1
2

T T T= +Z KAZ Z A K KA Z% % % % , it 

gives 

  -11 1 1 1 1 .
2 2 2 2 2

T T
u uR+ + = − +A K KA K Q KB B K&                                                        (32)  

Therefore, the time derivative of Lyapunov function becomes 

( ){ } ( )( )-1 11 1 tr .
2 2

T T T T T T
u u u d s uV R uε τ −= − − + − − + + −Z QZ Z KB B KZ Z KB x σ F σ ξB KZ&& % % % % %% %  

(33) 
 And then, 

( ){ } { }

( )( )

-1

1

1 1
2 2

tr .

T T T T T
u u u u d s

T T
u

V R uε τ

−

= − − + − + − +

+ −

Z QZ Z KB B KZ Z KB x Z KB

σ F σ ξB KZ

& % % % % % %

& %% %
         (34) 

Hence, 

( )( )

-1

1

1 1
2 2

tr .

T T T T
u M u d

T T T
u s u

V Ru

u

ε τ

−

≤ − − + +

+ + −

Z QZ Z KB B KZ Z Z KB

Z KB σ F σ ξB KZ

& % % % % % %

&% %% %
                                 (35) 

where Mε  is the maximum error of fuzzy approximation. In order to guarantee the 
robustness of closed-loop system, zκ  in (25) can be chosen such that 

.z d≥κ τ                                                                                                                  (36) 

 Since  

( ) 3T
u

k
j

r t= −Z KB%  

and  

( )

( )
( )( )

3

3
sgn

kr t J r t
kr t J

=  
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then, by substituting (25) into (35) and considering (36), it yields 

( )( )-1 11 1 tr .
2 2

T T T T T
u u M uV R ε −≤ − − + + −Z QZ Z KB B KZ Z σ F σ ξB KZ&& % % % % % %% %                  (37) 

Now, consider the following inequality: 
   ( )( ) 2 2tr , ,T

MF F F
σ− = − ≤ −σ σ σ σ σ σ σ σ% % % % % %                                                          (38) 

where Mσ  is the maximum element of vector σ . Then, substituting (28) and (38) into (37) 
gives 

( ){ } ( )2 2-1
min

1 .
2 M MF F

V R ε κλ σ≤ − + + + −Z Q Z Z σ σ& % % % % %                              (39) 

Rearranging (39) yields   

( ){ }
2

-1 2
min

1 1 1 .
2 2 4M M MFV R κ ε κλ σ σ

   ≤ − + + − − −     
Z Z Q σ& % % %                   (40) 

In order to guarantee 0V ≤& , terms inside the bracket of (40) must remain positive. 
Therefore, the convergence of parameters and the stability condition can be defined as the 
following inequalities: 

( )

2

-1
min

1
4 ,

M M

Z

κ
B

R

ε σ

λ

+
≥

+
Z

Q %
% @                                                                                       (41) 

   2
ˆ

1 1 ,
4 2M M MF κ B

σ
ε σ σ≥ + +σ% @                                                                        (42) 

where 
ˆ

B
σ

and ZB %  can be considered as the convergence regions.                                       □  

 
Remark 1: According to (41) and (42), if the filtered error ( )r t  and the approximation error 

in the fuzzy system ( )tσ%  exceed a certain but bounded value, then the closed-
loop system becomes stable; because the derivative of Lyapunov function 
becomes negative, which forces the system to go back  to the stable region. 

 
Remark 2: The proof of the above theorem shows that the variables ( )e tθ , ( )r t , and ( )tσ%  

are bounded at all time. 
 
Remark 3: The convergence regions 

ˆ
B

σ
and ZB %  can be made small by selecting 

appropriate values for 1R −  and κ . 
Remark 4: Speed tracking implies torque tracking (i.e., when the speed tracking error is 

bounded, then the torque tracking error remains bounded as well). This is shown 
in the following Corollary: 

 
Corollary: The adaptation law in (28) guarantees that the torque tracking error remains 

bounded. 
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Proof: By using (4) and (24), the difference between the generated torque and the desired 
torque can be written as  

  ( ) ( )( )*

1

ˆ( , ) .
m

T
k k d l s

k
T I T J T u uθ θ βθ

=

− = + + − + +∑ σ ξ x&& &                                               (43) 

in which 
1

( , )
m

k k
k

T Iθ
=

∑ is the torque signal generated by the phases of SR motor (estimated by 

the torque estimator in the torque controller part), and dT  is output of the speed controller 
that acts as the reference torque for the torque controller. Then, substituting (6) and (7) into 
(43) and using (17) and (25), it yields 

           

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

*

1

13

13

ˆ( , ) ,

ˆ sat

sat .

m
T

k k d s
k

T T
z

T
z

T I T h u u

k R r t r t
J

k R r t r t
J

θ

ε κ

ε κ

=

−

−

− = − − +

= + − − −

= + − −

∑ x υ σ ξ x

σ ξ x x σ ξ x

σ ξ x x%

                  (44) 

According to the above theorem, σ%  and ( )r t  are bounded and can be made small; 

moreover ( ) Mε ε≤x . Then, according to (44), it is clear that torque-tracking error 

remains bounded too.                                     □ 
 
Hence, the proved theorem, which guarantees stability of the speed controller, indirectly 
guarantees stability of the torque controller as well. Notice that, this argument is correct 

only if 
1

( , )
m

k k
k

T Iθ
=

∑  in (4) (i.e. the torque generated by the phases of the SR motor) is 

estimated with good accuracy in the torque controller part. In this paper, 
1

( , )
m

k k
k

T Iθ
=

∑  is 

estimated using a neural network. This network is trained off-line using experimental data. 
This issue will be addressed in the next section.  
 
4. Torque Controller Design 

Generally, there are two approaches for torque control in SR motors. The first approach, 
which is used commonly, is based on neglecting the saturation effects in the iron core. In 
this situation, relationship between the produced torque and current of the stator phase is 
linear and can be written as [2] 

 
( )

( )0 2

,
1 ,
2

i

n n n
nc

n n

L i i di
LWT i

θ
θ

θ θ θ

 
∂     ∂∂  = = =

∂ ∂ ∂

∫
                                                  (45) 

where cW  is the co-energy. From (45), the relationship between the reference torque and 
the reference current in the stator phase can be easily derived as 
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  ( )

1
2

d

ref

2
.

T
i L θ

θ

 
 = ∂
 ∂ 

                                                                                                 (46) 

But the main drawback of this approach is that it does not consider the saturation effects in 
the iron core. In the saturation region, the relationship between the phase current and the 
torque becomes nonlinear. Consequently, the torque ripple becomes considerably large, 
which increases the mechanical vibration of motor. 

One of the main reasons for torque ripple generation in SR motors is neglecting the 
nonlinear relationship between the phases current and the produced torque, and the position 
of rotor.  

In the second approach, a torque estimator is used. In this paper, a neural network is 
employed to estimate the generated torque of the SR motor. This network is trained off-line 
using data acquired form both the linear region and the saturation region. It will be shown, 
in simulations, that the second approach is very effective in torque ripple reduction. 
Moreover, it is more realistic, since it considers the saturation effects in the iron core. 

 
4-1  Proposed Torque Controller 
In view of (2) and considering that the phase inductance is a function of the phase current 

and position of the rotor (i.e. taking the saturation effects of the iron core into account), the 
relationship between the phase current and the phase torque becomes nonlinear. Based on 
this, a controller is designed in this section that consists of two parts: 1) a neural network, 
which estimates the total generated phases torque based on the phase current and the rotor 
position, and 2) a PI controller, which provides the phase reference current (Fig. 3). 

In this approach, the error between the reference torque, which is provided by the speed 
controller, and the estimated torque, which is given by the neural network, is the input to a 
PI controller. The output of the PI controller is the reference current. For the neural network 
part, a Multilayer Perceptron (MLP) is employed. The general structure of an MLP is shown 
in Fig. 4. Adjustable parameters are the synaptic weights connecting neurons of layers [15]. 
Inputs to the MLP are the phase current and the position of rotor. The output of the network 
is the estimated phase torque. The training data for the neural network is acquired form one 
period operation of the SR motor (i.e. from unaligned position to the aligned position of 
rotor). Hence, the saturation effect of the iron core is considered in the motor model. 
Therefore, the neural network takes the phase current and the rotor position as inputs, and 
estimates the desired torque based on (2). In the training procedure, the phase current is in 
the range of [0, maxI ] whereas this range for the position of rotor is [ 0 , 50° ° ] ( 0°  for the 
unaligned position and 45°  for the aligned position). One of the most common methods for 
training an MLP is the error back-propagation algorithm, in which weights are adjusted to 
minimize a predefined cost function as [18] 
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Fig. 4. Structure of an MLP neural network. 

 
where ( )nw  is a vector containing all the adjustable weights of the neural network,  

E( )
( )
n
n

∂
∂w

 is the gradient of error function with respect to weights, and η  is the learning rate 

[18]. 
 

 
5. Simulations 

In this section, the proposed controller is implemented to control the nonlinear model of 
a 6/4 SR motor (6 and 4 are the number of stator and rotor poles, respectively). Motor 
specifications are given in Table 1. In addition, the Finite Element Method (FEM) is 
employed for modeling the SR motor. Using this method, the data are stored form each 
phase in a lookup table. As it is clear from Fig. 2, saturation effect is considered in the 
modeling. As it was mentioned in section 3.2, the adjustable parameter of the fuzzy system 
is the variable σ  in (19). The Gaussian fuzzy membership functions for the input variables 

( )r t  and ( )e tθ  are shown in Fig. 5. The initial values for vector σ  (i.e. the center of 
membership functions for the THEN part of the fuzzy rules) are distributed evenly in the 
range of signal variations as 

( )0 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 T
  = − − − −σ . 

For the speed controller, some parameters, such as 1R − , κ  and F , must be regulated. Figs. 
6-9 show performance of the proposed controller with different values for 1R −  and κ .  
Matrix F is selected simply as an identity matrix. In the torque controller part, the best 
coefficients for PI controller are determined such that response of the torque control loop is 
fast enough; however, the proposed controller is not very sensitive to these coefficients. In 
the simulations 4 0 0pk =  and 4 0ik =  are selected.  
The neural network has 2 inputs (the phase current and the position of rotor), 2 hidden 
layers, with 40 and 20 neurons in the first and the second hidden layer, respectively, and 
one output (the estimated phase torque). The nonlinear activation function of neurons is of 
tangent hyperbolic type and the learning rate is 0.1. 
Simulation results show that the proposed controller is able to reduce effectively the torque 
ripples in the linear region as well as in the saturation region. In the following sections, the 
performance of the proposed controllers is evaluated. 
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5.1.Speed Controller Evaluation 
In this part of simulation, the proposed speed controller is evaluated for different values 

of its parameters (Figs. 6-9). As it is clear from Figs. 6 and 7, increasing 1R −  yields faster 
response for the speed signal and at the same time decreases convergence region ZB % , 
according to (41). Moreover, increasing this parameter increases torque reference signal 
(output of the speed controller signal) due to (15) and (17). Fig. 8 shows how the proposed 
controller reacts to parameterκ . Increasing κ  yields more oscillations in the fuzzy signal, 
according to (28). This in turn, increases convergence, according to (41) (Fig. 9). 
Fig. 10 shows the reference torque signal, produced by the speed controller and the 
generated torque signal for a sample torque load of 0.2 NM. Moreover, Fig. 11 shows the 
related torques and currents. 

 
 
 
 
 
 
 
 
 
 

    Fig. 5.  Membership functions for fuzzy system inputs ( )r t  and ( )e tθ . 
Table  1 

Parameters of the SR motor 
Parameter Value 

Stator poles 6 
Rotor poles 4 
DC voltage 100 V 

Stator resistance 0.5 Ω  
Moment of inertia 0.0002  Nms 

Viscous friction coefficient 0.00018 Nms2 

Maximum phase inductance 60  mH 
Minimum phase inductance 10  mH 

 

 
 
 
 
 
 
 
 
 
 
 
        

(a)                                                                                       (b) 
Fig. 6. (a) Output of the fuzzy system and (b) Reference torque, for different values of 1R − .  
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          1 0.02R − =  
- - - 1 0.015R − =  
       1 0.01R − =  
       1 0.005R − =  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Fig. 7. Speed of the SR motor for different values of 1R −  
 

 
    
 
 
 
 
 
 
 
 
 

  (a)                                                                                                   (b) 
  Fig. 8. (a) Output of the fuzzy system and (b) Reference torque, for different values of κ . 

 
 Fig. 9. Speed of the SR motor for different values of κ . 
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 (a)                                                                              (b) 
Fig. 10. (a) Reference torque and (b) generated torque, of the SR motor controller  

for load torque = 0.2 N.M 

(a)                                                                                                (b) 
Fig. 11. (a) Phase currents and (b) phase torques, for Fig. 10.  

 
5.2. Torque Controller Evaluation 

In this section, performance of the proposed torque controller is evaluated by operating 
in the saturation region. In this case, load torque is large enough to force the SR motor to 
operate in the saturation region.  

By increasing the load torque to 1 N.M, the torque controller, which is based on 
estimation of the phase torque by the neural network, effectively reduces torque ripples 
(Figs. 12). Fig. 13 shows the phase currents and the phase torques in the case of load torque 
equal to 1 N.M. In addition to the torque ripple reduction, one of the main benefits of using 
the neural network to model nonlinearities of the SR motor is smooth variations of the 
required phases current (Fig.13). Sharp peaks in phases current can cause difficulties in 
practice.         
 

5.3. Load Disturbance Rejection 
In this part, performance of the proposed controller will be evaluated in presence of load 
disturbance. At 0.3 st = , load disturbance equal to 0.1 N.M. is exerted to the rotor. Due to 
the use of a robustifying term su  in the control signal, load disturbance is rejected quickly 
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Load disturbance equal to 
0.1 N.M. is applied. 

(Fig. 14). Fig. 15 shows the generated motor torque in presence of the applied load 
disturbance. 

 
Fig. 12. Torque generated by the SR motor when load torque = 1 N.M. 

              (a)                                                                                               (b)  

Fig. 13. (a) phase torques and (b) phase currents when load torque = 1 N.M. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a)                                                                                              (b)  
 

Fig. 14. Performance of the proposed controller in presence of load disturbances, (a) angular speed and  
(b) reference torque (disturbance is applied at t = 0.3 s).  
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Fig. 15. Torque generated by the SR motor in presence of load disturbance (applied at t = 0.3 s). 

 
6. Conclusion and Future Work 

In this paper, a new adaptive method for controlling speed and torque of switched 
reluctance motors was introduced. This controller can effectively reject disturbances as well 
as uncertainties in parameters of the motor that are present in almost all practical 
applications. The speed controller consists of two main components: 1) an adaptive 
intelligent controller, which is a Sugeno-type fuzzy system and approximates the load 
torque, the error in moment of inertia, and the viscous friction, and 2) an optimal controller, 
which forces the output of the system optimally track the target signal. In addition, the 
stability of the speed controller was guaranteed using the Lyapunov stability theory. 
Moreover, torque ripple reduction was achieved by applying a neural network torque 
estimator, which was trained off-line using motor data, obtained from finite-element 
method. Inputs to the neural network were the phase current and the actual position the SR 
motor. The error between the reference torque and the output of the neural network is input 
to a PI controller, which was used as a torque controller. The simulation results showed 
effectiveness of the proposed controller in torque ripple reduction. In addition, the phase 
currents, in the proposed torque controller, have smooth variations. Future works of this 
research include: 1) performing analytical work on the stability of the closed-loop system 
when both the speed controller and the torque controller are present, 2) applying optimal 
control in the torque control strategy and defining the cost function, in which some 
important factors of the SR motor, such as radial force variations and energy consumption, 
is considered. 
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