دوره 5، شماره 4 - ( 9-1394 )                   جلد 5 شماره 4 صفحات 2027-2017 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heidari M, Homaei H, Golestanian H. Fault diagnosis of gearboxes using LSSVM and WPT. ASE 2015; 5 (4) :2017-2027
URL: http://www.iust.ac.ir/ijae/article-1-331-fa.html
Heidari A. Fault diagnosis of gearboxes using LSSVM and WPT. Automotive Science and Engineering. 1394; 5 (4) :2017-2027

URL: http://www.iust.ac.ir/ijae/article-1-331-fa.html


چکیده:   (19319 مشاهده)

This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method consists of three steps, firstly the six different base wavelets are considered. Out of these six wavelets, the base wavelet is selected based on wavelet selection criterion to extract statistical features from wavelet coefficients of raw vibration signals. Based on wavelet selection criterion, Daubechies wavelet and Meyer are selected as the best base wavelet among the other wavelets considered from the Maximum Relative Energy and Maximum Energy to Shannon Entropy criteria respectively. Finally, the gearbox faults are classified using these statistical features as input to LSSVM technique. The optimal decomposition level of wavelet is selected based on the Maximum Energy to Shannon Entropy ratio criteria. In addition to this, Energy and Shannon Entropy of the wavelet coefficients are used as two new features along with other statistical parameters as input of the classifier. Some kernel functions and multi kernel function as a new method are used with three strategies for multi classification of gearboxes. The results of fault classification demonstrate that the LSSVM identified the fault categories of gearbox more accurately with multi kernel and OAOT strategy.

متن کامل [PDF 647 kb]   (5615 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: موتور احتراق داخلی

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بین‌المللی مهندسی خودرو می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Automotive Science and Engineering

Designed & Developed by : Yektaweb