
International Journal of Automotive Engineering   Vol. 6, Number 1, March 2016 

A comparison of different network based modeling methods 
for prediction of the torque of a SI engine equipped with 

variable valve timing 

 

Abstract 

Nowadays, due to increasing the complexity of IC engines, calibration task becomes more severe and the 
need to use surrogate models for investigating of the engine behavior arises. Accordingly, many black box 
modeling approaches have been used in this context among which network based models are of the most 
powerful approaches thanks to their flexible structures. In this paper four network based modeling methods 
are used and compared to model the behavior of an IC engine: neural networks model (NN), group method 
of data handling model (GMDH), a hybrid NN and GMDH model (NN-GMDH), and a GMDH model 
whose structure is determined by genetic algorithm (Genetic-GMDH). The inputs are engine speed, throttle 
angle, and intake valve opening and closing timing, and the output is the engine brake torque. Results show 
that NN has the best prediction capability and Genetic-GMDH model has the most flexible and simplest 
structure and relatively good prediction ability. 

. 

Keywords: Neural networks; Group method of data handling; Engine torque; Black box modeling; Variable valve 
timing

1. Introduction 

Nowadays the engine calibration process becomes 
more complicated and confusing task due to the 
increasing of the complexity of the engine and its 
control variables. Usually the calibration engineer has 
to search the optimum setting for the engine at each 
speed, and in various operating conditions such as 
cold start, cruising, etc.  So, execution of this task is 
very time consuming, must trust on the experience of 
the engineer [1], and may not provide optimum 
setting for all of the operating conditions. One of the 
most effective solutions for this problem is black box 
modeling in which the variations of the torque, fuel 
consumption, or emissions due to the variations of 
control variables (such as valve timing, injection 
timing, etc) are modeled with least prior information 
about the physics of problem. There are various 
methods for black box modeling, among which 
network based methods (such as Neural Networks or 
Group method of Data Handling) are of most 
significance. All of these methods mimic the neural 
structure in living organisms and have an inter-

connected network of neurons (nodes). This modeling 
schema has a large potential for modeling nonlinear 
and complicated systems only by using some input-
output recorded samples. So these modeling 
techniques are used widely for modeling complicated 
phenomena in the fields such as engineering [2-3], 
chemistry and biochemistry[4], economics [5-6], etc. 
Specifically, in the field of IC engine, numerous 
researches have been reported in which these methods 
have been applied for modeling and prediction of the 
engine behavior. Ismail et al.[7] used NN for 
predicting of nine different light duty diesel engine  
responses, such as carbon monoxide (CO), nitrogen 
monoxide (NO), maximum pressure, etc. using 
various blends for the fuel. Results showed that NN 
models with 10   

Neurons and Levenberg-Marquardt training 
algorithm are the best ones, and seven out of nine 
engine-out responses can be predicted by these 
models accurately.  Tasdemir et al.[8] applied NN and 
fuzzy expert system approaches for predicting of the 
engine torque, emissions, and fuel consumption. 
Statistical investigations indicated that the both 
methods have a good ability for data prediction and 
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there is no significant difference between them. 

Atashkari et al.[9] used GMDH networks for 

modeling the engine torque and fuel consumption of a 

SI engine equipped with VVT. The structure of the 

model was determined by genetic algorithm. Results 

showed the superiority of this approach over NN 

models in data prediction. The developed model was 

used for variable valve timing optimization. 

Kalogirou[10] implemented a comprehensive review 

of the application of such methods in engine and 

combustion modeling. 

Variable valve timing is now one of the well-

known technologies capable of increasing the torque 

and power of the engine, and at the same time 

reducing its fuel consumption and emissions. In a 

conventional IC engine the valve timing is fixed and 

usually is set for optimum performance of the engine 

at high speeds and wide-open throttle conditions. But 

this fixed timing is not optimum for all areas of 

engine operation space. For example at high engine 

speeds a long overlap period could improve the 

volumetric efficiency, and hence, the output torque of 

the engine, but at low speeds this period should 

decrease in order to prevent the exhaust gas from 

entering the inlet port excessively. Hence, 

considerable improvement in the performance and 

fuel consumption will occur if the variable valve 

timing technology is used. According to these 

advantages, during the last few years, many 

researchers have focused on this technology and its 

potential improvements[9,11-18]. 

 In this study four network-based modeling 

methods (namely Neural Networks (NN), Group 

Method of Data Handling network (GMDH), hybrid 

neural networks and GMDH algorithm (NN-GMDH), 

and hybrid genetic GMDH algorithm) are compared 

in the modeling of the torque of an IC engine in terms 

of engine speed, throttle position, and inlet valve 

opening and closing timing. In the following sections 

first each of these methods is briefly described. Then 

the method of data collection is described. At last the 

results of the application of each method in modeling 

the prepared data are represented and the best method 

among the others are chosen. 

2 Network-Based Modeling Methods 

As mentioned before, these methods mimic the 

neural structure in living organisms and have an 

interconnected network of neurons (nodes). Each 

node has two or more inputs, a transfer function that 

transforms these inputs to the output, and probably 

some weighting coefficients. The outputs of the nodes 

serve as the inputs to the other nodes, and the output 

of the last node is the output of the model. In this way 

a very complex model can be represented by some 

processing units (i.e. neurons) interconnecting with 

each other in a specific manner. This modeling 

schema has a large potential for modeling nonlinear, 

complicated, and multidimensional systems only by 

using some input-output recorded samples. In this 

paper four types of such models are explained, 

developed in MATLAB, and their ability to predict 

the engine behavior are compared.  

2.1 Artificial Neural Networks 

As Nelles stated[19], it is hard to draw a clear line 

between neural networks and non-neural networks 

models. The models referred here as NNs are Multi 

Layer Perceptron (MLP) networks. This is one of the 

most popular types of NNs models and its description 

can easily be found in the literature. So it is not 

explained here. 

2.2 Group Method of Data Handling (GMDH) 

Briefly speaking, GMDH is a self organizing 

network that its transfer functions are polynomial and 

its coefficients are determined by regression method. 

This type of network model first was developed by 

Ivakhnenko[20], and then enhanced by others[10]. 

The ability to organize the neurons in a layer and 

eventually determine the structure of the model is a 

characteristic distinguishing GMDH from 

conventional NN models. Furthermore, since the 

coefficients of each neuron in GMDH network are 

determined explicitly  by regression method, the 

probability of trapping the solution in local minima 

(which is usual for a NN training process) is  not 

concerned. 

Modeling problem with GMDH networks can be 

described as follows: Assuming a multi-input single 

output function y=f(x1, x2,..., xn) with m samples as 

(xi1, xi2,..., xin,yi) 1≤i≤m, the purpose of modeling 

with GMDH (and any other modeling method) is to 

produce a function yp= fp(x1, x2,..., xn) that for a 

given input vector, can predict the actual output as 

precisely as possible. GMDH structure is determined 

by the number of neuron inputs in each layer (p) and 

the type of polynomial used in the neurons. There are 

two types of GMDH network, namely basic and 

modified structure. In the basic type all of the neurons 

in all layers have the same number of inputs. But in 

the modified type the number of inputs in each layer 

can be different. Three types of polynomials usually 

used in GMDH neurons are linear, quadratic and 
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modified quadratic. These polynomials with two 

inputs have the following forms: 
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2- Using rtr samples of the m samples  (xi1, xi2,..., 

xin,yi) 1≤i≤m as training set, the coefficients of the 

polynomial of each neuron are determined by a 

regression method.  

3- Of the s neurons constructed in the first layer, 

only the ones with best performance survive in the 

layer and the remaining are discarded.  Performance 

of the neurons are evaluated using the mean square 

error in the internal test set. This set is the remaining 

rt samples (rt =m-rtr). This set is merely for choosing 

the best neurons and should not be confused with test 

set usually used for performance evaluation of the 

model after terminating the modeling process, so 

named here as internal test. In this way the model is 

prevented from overfitting. The number of survivors 

in each layer (ssurv) is predefined by the user. 

4- The outputs of the neurons of the first layer are 

the inputs for the second layer, and steps 1-3 are 

repeated for this layer. 

5- Steps 1-4 are repeated until the maximum 

number of layers predefined by the user, or a defined 

criterion is reached. In the last layer only the neuron 

with best performance survives and all of the others 

are discarded. Neurons in all layers having no 

connection with this neuron are also eliminated. 

2.3 Genetic GMDH 

This modeling method is a modified version of the 

conventional GMDH method in which the structure of 

the model is determined by genetic algorithm. The 

method was first introduced by Narimanzadeh[21], 

and has shown its capabilities in various problems[21-

25]. Modeling procedure is very similar to GMDH 

modeling approach. But there are two significant 

differences between classic GMDH and genetic 

GMDH. First is in the process of structure 

determination. In genetic GMDH approach, instead of 

"choosing the best neurons" procedure used in 

GMDH, genetic algorithm is applied for structure 

determination. Second difference refers to the model 

structure: Here, the inputs of each neuron can come 

from all of the previous layers. This gives the model 

much more flexible structure and the chance of 

having better performance with simpler structure.  

For application of genetic algorithm, first the 

model structure must be encoded so that it can be 

used as the input variable for the algorithm. This 

procedure has been shown in Fig. 1 (left) for two 

typical models. An important point is that if a neuron 

output passes, without any change, through one layer, 

its name will be repeated one more time (like the 

input d in Fig. 1, bottom left). Accordingly, if a 

neuron output passes through n adjacent layers 

without any change, the number of its repetitions will 

be 2n.  

Using this encoding scheme, the application of 

genetic algorithm for optimization of the model 

structure becomes possible. First a function is 

developed in MATLAB whose input is the code of a 

structure, and its output is the cost function of the 

genetic algorithm. This cost function is defined here 

as the root mean square error of the model on the 

training data: 

 

Which genetic algorithm tries to minimize. First a 

population of several structures is randomly 

generated. Then this population evolves by means of 

genetic operators such as crossover and mutation, and 

finally the best chromosome in the last generation is 

chosen as the best structure.  

Using genetic algorithm and its operators 

(crossover and mutation) with the described encoding 

scheme is straightforward. Fig. 1 shows crossover 

operation for two chromosomes. For this operation a 

point in the both chromosomes is randomly chosen. 

This point should be chosen only from the set {21, 

22, 23... 2nl} where nl is the number of hidden layers 

in the smaller chromosome.  

Mutation operation is also easily executed by 

randomly choosing a gene in a chromosome and 

replacing it randomly to another legal alphabetical 

character. 

In this way, by means of GMDH approach to find 

the coefficients of the model, and genetic algorithm to 

find the best structure for the model, a more flexible 

and powerful modeling scheme is developed in 

comparison with conventional NN and GMDH 

modeling methods.
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Fig1. Two typical models for representing the encoding scheme and crossover operation. Each letter denotes an input [9] 

 

Fig2. Schematic diagram of a hybrid NN GMDH model[25] (SOPNN stands for Self Organizing Polynomial Neural Network another name 
for GMDH networks.) 

Table 1 Specifications of the engine used for modeling 

Engine type Four Stroke, SI 

Aspiration Normal 

Fuel System Multi-port Fuel Injection 

Number of cylinders 4 

Number of valves 8 

Displacement (cc) 1761 

Bore (mm) 83 

Stroke (mm) 81.4 

Compression Ratio 9.3:1 

Max I/O Valve Lift (mm) 9.7 
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2.4 Hybrid NN-GMDH 

This method, firstly introduced by Kim et al.
[25]

, is 

a combination of NN and GMDH models in a cascade 

form. The model consists of two parts. In the first part 

a conventional neural network and in the second part, 

a GMDH network is developed, and the outputs of 

each neuron in the last hidden layer of the NN serve 

as the inputs to the GMDH model. Training of the NN 

and GMDH networks is implemented conventionally. 

Fig. 2 shows this hybrid model schematically.   

According to the author, this hybrid model 

provides a synergistic environment and can handle the 

limitation of GMDH method in modeling the systems 

with few inputs. So, it was chosen here as a candidate 

method for modeling. 

3 Data Gathering and Preparation  

For data gathering one must run an actual engine 

on the dynamometer and record the inputs and 

outputs. But this method can be expensive and time 

consuming, specifically if the number of data points is 

large, or adjusting the input variables is hard to 

implement. So, we use a comprehensive numerical 

model of the actual engine. This model should have 

acceptable accuracy and computational cost. There 

are various models for engine simulation such as zero, 

one, two, and three dimensional models, with various 

levels of accuracy and computational cost. Among the 

others, one dimensional models are able to 

compromise between accuracy and computational 

cost in a satisfactory manner for this study. So, a 

comprehensive one dimensional model was 

developed in GT POWER in which main phenomena 

such as gas flow through inlet and outlet valves, and 

combustion, along with all the engine components 

such as inlet and outlet manifolds, catalyst convertor, 

filter, muffler, and exhaust have been carefully 

modeled. Combustion was modeled with wiebe 

function and its coefficients were determined based 

on the experimental data recorded from actual engine. 

The engine type is XU7/JP4/L3 and its specifications 

have been shown in Table 1. 

The accuracy of this model for predicting the 

engine brake power is shown in Fig. 3. As can be 

seen, the developed engine model has a good 

accuracy except for high engine speeds. Maximum 

and mean relative error are 11% and 4% respectively.  

Latin Hypercube method, being more suitable 

than other methods such as factorial design for  

 

 

numerical experiments[26-27] is used here for 

designing the matrix of experiments. This involves 

the definition of range of each variable, and the 

number of divisions for them. The ranges of the 

variables are shown in Table 2. Each variable 

subdivides into 78 intervals with equal probability. 
From the 78 samples the first 63 samples  

are used for training and the last 15 ones are 

used for testing the ability of the models in 

predicting of the unseen data. 

4 Results and discussion    

4.1 Artificial Neural Networks 

Of the 63 samples for training, 57 samples are 

used explicitly for training the network, and the 

remaining 6 samples are used for early stopping, a 

method for preventing the model from overfitting the 

data. Since the best structure for the data in hand is 

not known initially, a process of trial and error should 

be accomplished in order to find the best structure. 

Accordingly, structures with one hidden layer and 5, 

10, and 15 neurons have been examined. Two types 

of transfer function also have been tried. Hyperbolic  

tangent (tansig), having saturation behavior, and 

linear function (purelin). In order to comparison the 

performance of different models in a quantitatively 

manner, three criterions have been used: Root mean 

square error (RMSE), max error (MAXE), and 

absolute fraction of variance (R2) defined as: 
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Where n denotes the number of training or test 

data, and yi , ypi are actual and estimated outputs 

respectively. Results have been shown in the Table 

A.1 in appendix A. For an easy comparison, the 

RMSE of the models has been represented graphically 

in Fig. 4. 
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Fig3.  Actual engine and simulated model brake power at different engine speeds. 

 

Table 2 Selected range for each variable. 

Input Variable Minimum Maximum 

Inlet valve-opening timing 
(Deg, aTDC) 

-40 10 

Inlet valve-closing timing 
(Deg, aBDC) 

0 80 

Throttle Position (Deg) 0 90 

Engine Speed (rpm) 1000 6000 

 

 

Fig4. RMSE values for various NN models. 

As can be seen, when tansig transfer functions are 

used, the test error gradually increases with increasing 

the neurons, but training error first slightly reduces 

and then increases. It must be noted that early 

stopping prevents training error from becoming very 

small, otherwise training error would reduce 

monotonically by increasing the number of neurons. 

The model with 15 neurons has the biggest test error 

which is a sign of excessive complexity of the model. 

The models with 5 or 10 neurons have reasonable 

training and test error, and so can be chosen as the 

best model.  

All models with linear transfer functions have 

nearly the same training and test errors. In addition, 
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the values of these two errors are close to each other. 

The reason refers to the linear transfer functions 

which make the whole model be linear, independent 

of the number of neurons. As can be seen, linear 

transfer functions causes much more error in 

comparison with tansig functions and are not suitable 

for the data in hand. This reflects the nonlinear 

behavior of the system. So the best model is the one 

having 5 or 10 neurons with tansig functions.  

4.2 Group Method of Data Handling (GMDH) 

Networks 

Of the 63 samples for training 50 samples are used 

are used explicitly for training, and the 13 remaining 

samples for choosing the best neurons in each layer. 

Here, we use structures with 2, 3, and 4 layers, and 

quadratic transfer functions for all of the neurons. 

Both basic and modified networks are developed. In 

the basic form the neurons in all layers have two 

inputs. In the modified form the neurons of the first 

layer have 2 inputs and in the other layers have 3 

inputs . Also the number of the remaining neurons in 

each layer is set to 30. Results have been shown in the 

Table A.2 in appendix A. The RMSE of the models 

has been represented graphically in Fig. 5. 

According to the results, in modified form, 

training error reduces gradually with increasing the 

number of layers. Test error also firstly reduces, but 

increases afterward. This shows that the model with 4 

layers has excessive complexity resulting in 

overfitting the data. In basic models, increasing the 

layers doesn't have any meaningful effect on the 

training and test errors except for one case in which 

the training error decreased by increasing the layers 

from 2 to 3.  The other point is that modified models 

usually have lower training and test errors in 

comparison with basic models. It can be concluded 

that modified model with 3 layers is the best one 

having reasonable training and test errors. In Fig. 6 

the structure of the this model has been shown.  

4.3 Genetic GMDH models 

Here, the major parameters affecting the training 

process refer to the genetic algorithm. For this 

algorithm a population of 32 individuals is made and 

evolved by the crossover and mutation operators in 

order to make the next generations. Mutation rate is 

set to 0.15. 30% of the all individuals in a generation 

are directly transferred to the next generation and 

total number of generations is 200. Here, in order to 

choose models with more prediction power, training 

data set is subdivided into two subsets: internal 

training data including 50 samples and used to 

determine the coefficients of the model, and internal 

test data including 13 samples used to evaluate the 

cost function for the model. Results for the best 

models with 3, 4, 5, and 6 layers have been 

represented in Table A.3.  

 
 
 

 
 

Fig5. RMSE values for various GMDH models 

. 
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Fig6. The structure of the selected GMDH model. 

 

 
Fig7. RMSE values for various Genetic GMDH models. 

 
Fig8. The structure of the selected Genetic GMDH model. 

Root mean square errors of the models on training 

and test data sets have been shown in Fig. 7. Results 

shows that the both errors first reduce and then 

increase with increasing the layers. Training error is 

minimum in the model with 5 layers, and test error in 

the model with 4 layers. Model with 3 layers has 

relatively high training and test errors which may be 

due to its simple structure and excluding input 3 from 

the model. Also the model with 6 layers has a large 

test error reflecting the extra complexity of the model. 

It can be concluded that the model with 4 layers is the 

best one compromising among training and test errors 

and complexity of the model in the best way. The 

structure of this model has been represented in Fig. 8. 

4.4 Hybrid NN-GMDH models 

The NN part has 10 neurons and both tangent 

hyperbolic and linear functions are used for neurons. 

Furthermore, its training parameters are the same as 

the NN model developed before. Likewise, the 

GMDH part is very similar to the GMDH model 

developed in section 4.2. Both basic and modified 

type networks with 2, 3, and 4 layers are tried. Results 

have been shown in Table A.4 and A.5 in appendix A, 

and Fig. 9. Based on the results, test errors of the NN-

GMDH models are usually higher than the 

corresponding errors in other types of model. Errors 
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don't have regular trends when tangent hyperbolic 

transfer functions are used in NN part. Also in most 

cases the training and test errors of the NN part are 

less than the corresponding errors of the whole model. 

This may be due to the saturation behavior of tangent 

hyperbolic function. This behavior causes the 

majority of the components of input vectors to the 

GMDH part to lie near 1 or -1 which in turn results in 

ill-conditioning. In addition, as stated before, the least 

squares method itself is susceptible to ill-

conditioning. These can cause the training, and 

specifically test errors, to become relatively high, 

especially if the model is of modified type with 4 

layers (i.e. has more complexity). Fig. 10 shows 

prediction of the test set by a modified model with 4 

layers that suffers from this problem.  However, as 

linear functions don't saturate, this is not the case 

when linear transfer functions are used in NN part. In 

both basic and modified types training error reduces 

monotonically as the layers increase, and test error 

has a minimum in models with 3 layers. Hence the 

modified model with 4 layers and linear transfer 

functions in NN part can be chosen as the best model 

among the others. The structure of this model has 

been shown in Fig. 11. 

4.5 Comparison among different methods    

Root mean square and maximum error of the 

chosen models, on the training and test data sets, have 

been represented in Fig. 12 and 13 respectively. 

As can be seen NN model with 10 neurons has the 

lowest training and test error, and hence the best 

prediction power among the others. Furthermore, 

GMDH and Genetic GMDH models have nearly the 

same results, and hybrid NN-GMDH model has the 

least prediction capability among the others. 

Maximum errors also reflect the same facts. 

The other comparable characteristic is the 

complexity of the models. Total number of neurons in 

the model and the sum of the number of the inputs of 

all neurons are the two criterions chosen here for 

evaluating the complexity. Fig. 14 shows these two 

quantities for the chosen models.  

Results shows that genetic GMDH model with 9 

neurons and 18 inputs has the least complexity, on the 

other hand NN-GMDH with 21 neurons and 66 inputs 

is the most complex model. Also, the NN has 10 

neurons and 40 inputs, and GMDH has 9 neurons and 

22 inputs. 

Other noteworthy characteristic is the total 

training time of each model. Results for the chosen 

models have been shown in Table 3. It can be seen 

that GMDH model has the lowest training time. The 

relatively long training time of Genetic GMDH 

models is due to the nature of the genetic algorithm 

that involves several generations each consisting of 

many individuals (i.e. models). As mentioned before, 

the number of generations is 200, and there are 32 

individuals in each generation. So the average time to 

for implementing the genetic algorithm and training 

for each individual is approximately 0.0009 Sec. The 

long training time in this method is the cost of finding 

the best structure for the model. 

It can be concluded that NN model has the best 

prediction capability and Genetic GMDH model has 

the simplest structure. GMDH model also has a good 

prediction capability and the least training time. 

However, NN model has no self organizing 

properties. But GMDH and Genetic GMDH models 

can train the data and determine the appropriate 

structure simultaneously. In this regard Genetic 

GMDH models are more powerful due to more 

flexible structures. Hence, NN and Genetic GMDH 

models can be chosen as the best models, the first one 

for its prediction power, and the second one for its 

self organizing characteristic and flexible structure. 

The performance of the NN model with 10 neurons 

has been shown in Fig. 15 and 16. 

 

 

 
 

Fig9. RMSE values for various NN-GMDH models: Tangent hyperbolic functions in NN part (left), linear functions in NN part (right). 
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Fig10. An example of weak prediction of the test data with a modified NN-GMDH model with 4 layers. RMSE on test data is 5.21. 

 

 
 

Fig11. The structure of the selected NN-GMDH model. 

 

 
Fig12. Root mean square error on the training and test data sets for the chosen models. 

 

 
 

Fig13. Maximum error on the training and test data sets for the chosen models. 
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Fig14. A comparison of the complexity of the chosen models in terms of total number of neurons in the model and the sum of the 

number of their inputs. 

 

 
Table 3 Training time of various methods on a computer with intel® core i7-2670QM CPU and 8 GB of RAM. 

NN 0.70 
GMDH 0.26 
NN-GMDH 3.07 
Genetic-GMDH 6.30 

 

 
 

Fig15. Actual and estimated outputs of the training data by NN model with one hidden layer, 10 neurons, and tansig transfer functions. 

 
 

Fig16. Actual and estimated outputs of the test data by NN model with one hidden layer, 10 neurons, and tansig transfer functions. 

5 conclusions 

In this paper four network based modeling 

approaches were explained, used and compared to 

model the behavior of an IC engine with VVT: neural 

networks model (NN), group method of data handling  

 

 

model (GMDH), a hybrid NN and GMDH model 

(NN-GMDH), and a GMDH model whose structure is 

determined by genetic algorithm (Genetic-GMDH). 

Engine speed, throttle angle, and inlet valve opening 

and closing timing were the inputs, and the output 
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was the engine brake torque. Comparison among 

these models implemented based on root mean square 

and maximum error of the models on the training and 

test data sets, the complexity of the models, and the 

training time. Results showed that NN model has the 

best prediction ability, and  

Genetic-GMDH model has the simplest and most 

flexible structure, and reasonable prediction power.  

However the results of the GMDH and the 

Genetic-GMDH models were also close to each other. 

Furthermore, the GMDH model training time was 

much less than the genetic GMDH training time. 

Hence these approaches can be used to developed 

surrogate models for more complex systems with 

more inputs. NN-GMDH model didn't have 

satisfactory results in terms of training and test error, 

model complexity, and training time.  
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APPENDIX A  

Table A.1 Results of the prediction of training and test data sets by various NN models. 

R2 MAXE RMSE # of Neurons 
Transfer 

Function 

Train=0.9985 

Test=0.9953 

Train=0.1405 

Test=0.1586 

Train=0.0456 

Test=0.0716 
5 

tansig 
Train=0.9990 

Test=0.9954 

Train=0.1771 

Test=0.1378 

Train=0.0377 

Test=0.0711 
10 

Train=0.9984 

Test=0.9955 

Train=0.1238 

Test=0.1837 

Train=0.0468 

Test=0.0718 
15 

Train=0.9542 

Test=0.9402 

Train=0.6160 

Test=0.4274 

Train=0.2459 

Test=0.2513 
5 

purelin 
Train=0.9548 

Test=0.9466 

Train=0.6348 

Test=0.3853 

Train=0.2455 

Test=0.2383 
10 

Train=0.9534 

Test=0.9483 

Train=0.7831 

Test=0.3774 

Train=0.2542 

Test=0.2364 
15 

 

Table A.2 Results of the prediction of training and test data sets by various GMDH models. 

R2 MAXE RMSE # of Layers Type 

Train=0.9928 

Test=0.9914 

Train=0.2544 

Test=0.2260 

Train=0.0994 

Test=0.0965 
2 

Basic 
Train=0.9955 

Test=0.9916 

Train=0.2005 

Test=0.1909 

Train=0.0794 

Test=0.0949 
3 

Train=0.9953 

Test=0.9920 

Train=0.1712 

Test=0.2056 

Train=0.0810 

Test=0.0936 
4 

Train=0.9958 

Test=0.9926 

Train=0.1568 

Test=0.2043 

Train=0.0763 

Test=0.0896 
2 

Modified 
Train=0.9970 

Test=0.9945 

Train=0.1411 

Test=0.1788 

Train= 0.0652 

Test= 0.0775 
3 

Train=0.9977 

Test=0.9905 

Train=0.1388 

Test=0.1960 

Train=0.0573 

Test=0.1017 
4 

 

Table A.3 Results of the prediction of training and test data sets by various genetic GMDH models. 

R2 MAXE RMSE # of Layers 

Train=0.9960 

Test=0.9914 

Train=0.1658 

Test=0.2166 

Train=0.0753 

Test=0.0964 
3 

Train=0.9970 

Test=0.9934 

Train=0.1654 

Test=0.1600 

Train=0.0646 

Test=0.0862 
4 

Train=0.9976 

Test=0.9927 

Train=0.1554 

Test=0.2196 

Train=0.0582 

Test=0.0907 
5 

Train=0.9966 

Test=0.9859 

Train=0.1534 

Test=0.2861 

Train=0.0684 

Test=0.1199 
6 
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Table A.4 Results of the prediction of training and test data sets by various NN-GMDH models with tansig transfer functions. 

R2 MAXE RMSE RMSE (NN) 
# of 

Layers 
Type 

Train=0.9972 

Test=0.9843 

Train=0.2127 

Test=0.2445 

Train=0.0621 

Test=0.1329 

Train=0.0462 

Test=0.0911 
2 

Basic 
Train=0.9956 

Test=0.9757 

Train=0.2249 

Test= 0.3681 

Train=0.0774 

Test=0.1714 

Train=0.0424 

Test=0.0679 
3 

Train=0.9961 

Test=0.9774 

Train=0.1777 

Test=0.2980 

Train=0.0729 

Test=0.1629 

Train=0.0694 

Test=0.1654 
4 

Train=0.9940 

Test= 0.9778 

Train=0.3148 

Test=0.3098 

Train= 0.0908 

Test=0.1583 

Train=0.0502 

Test=0.1408 
2 

Modified 
Train=0.9952 

Test=0.9810 

Train=0.3440 

Test=0.2694 

Train=0.0810 

Test=0.1454 

Train=0.0603 

Test=0.0914 
3 

Train=0.9974 

Test=0.9643 

Train=0.2093 

Test=0.5111 

Train=0.0594 

Test=0.2004 

Train=0.0624 

Test=0.1608 
4 

 

Table A.5 Results of the prediction of training and test data sets by various NN-GMDH models with purelin transfer functions. 

R2 MAXE RMSE RMSE (NN) 
# of 

Layers 
Type 

Train=0.9848 

Test=0.9603 

Train=0.3656 

Test=0.5047 

Train=0.1439 

Test=0.2179 

Train=0.2463 

Test=0.2435 
2 

Basic 
Train=0.9931 

Test=0.9683 

Train=0.2574 

Test=0.4153 

Train=0.0973 

Test=0.1970 

Train=0.2479 

Test=0.2211 
3 

Train=0.9958 

Test=0.9639 

Train=0.1698 

Test=0.4529 

Train=0.0759 

Test=0.2052 

Train=0.2473 

Test=0.2289 
4 

Train=0.9906 

Test=0.9619 

Train=0.2697 

Test=0.3497 

Train=0.1134 

Test=0.2010 

Train=0.2504 

Test=0.2859 
2 

Modified 
Train=0.9931 

Test=0.9906 

Train=0.3447 

Test=0.2120 

Train=0.0971 

Test=0.1018 

Train=0.2484 

Test=0.2213 
3 

Train=0.9966 

Test=0.9901 

Train=0.1447 

Test=0.1846 

Train=0.0680 

Test=0.1055 

Train=0.2467 

Test=0.2501 
4 

   

 

Nomenclature 

NN Neural Networks RMSE Root Mean Square Error 

GMDH Group Method of Data Handling MAXE Maximum Error 

VVT Variable Valve Timing aTDC After Top Dead Center 

SI Spark Ignition aBDC      After Bottom Dead Center 

IC Internal Combustion   

 

 

 


