Improving the Cooling Process of Heavy-Duty Engines through Three Dimensional Simulation of Fluid Flow in its Coolant Centrifugal Pump. Automotive Science and Engineering. 1397; 8 (3) :2807-2816
URL: http://www.iust.ac.ir/ijae/article-1-476-fa.html
چکیده: (24973 مشاهده)
This paper investigates 3D simulation of fluid flow in a centrifugal pump from the Detroit Diesel company to extract possible engine cooling trends. The velocity and pressure profile of water, the coolant, is analyzed and the characteristic curves of the pump are derived. This provides a useful evaluation of the pump performance at all working conditions. For this aim, a computational fluid dynamic model is developed using ANSYS CFX for a wide span of flow rates and a number of shaft angular velocities. The variation of constituting parameters are examined using dimension-less descriptive parameters of flow, head and power coefficients, finally, the efficiency of the pump is examined. In this analysis, sst-k-w turbulent model is employed which is a combination of two different models for pumps and turbomachines. Numerical results show that prolonged cooling duty cycles of the vehicle should accompany a flow factor of 10%. In addition, the peak of the vehicle’s loading should match the maximum efficiency of the pump that can be increased to 62% by augmentation of flow rate and flow coefficient.
نوع مطالعه:
پژوهشي |
موضوع مقاله:
سیستم های مکاترونیک