دوره 15، شماره 1 - ( 12-1403 )                   جلد 15 شماره 1 صفحات 4633-4619 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vakili E, Mashadi B, Amirkhani A. Ethical Decision-Making in Autonomous Vehicles: A Human-Centric Risk Mitigation Approach Using Deep Q-Networks. ASE 2025; 15 (1) :4619-4633
URL: http://www.iust.ac.ir/ijae/article-1-697-fa.html
Ethical Decision-Making in Autonomous Vehicles: A Human-Centric Risk Mitigation Approach Using Deep Q-Networks. Automotive Science and Engineering. 1403; 15 (1) :4619-4633

URL: http://www.iust.ac.ir/ijae/article-1-697-fa.html


چکیده:   (837 مشاهده)
Ensuring that ethically sound decisions are made under complex, real-world conditions is a central challenge in deploying autonomous vehicles (AVs). This paper introduces a human-centric risk mitigation framework using Deep Q-Networks (DQNs) and a specially designed reward function to minimize the likelihood of fatal injuries, passenger harm, and vehicle damage. The approach uses a comprehensive state representation that captures the AV’s dynamics and its surroundings (including the identification of vulnerable road users), and it explicitly prioritizes human safety in the decision-making process. The proposed DQN policy is evaluated in the CARLA simulator across three ethically challenging scenarios: a malfunctioning traffic signal, a cyclist’s sudden swerve, and a child running into the street. In these scenarios, the DQN-based policy consistently minimizes severe outcomes and prioritizes the protection of vulnerable road users, outperforming a conventional collision-avoidance strategy in terms of safety. These findings demonstrate the feasibility of deep reinforcement learning for ethically aligned decision-making in AVs and point toward a pathway for developing safer and more socially responsible autonomous transportation systems.
متن کامل [PDF 589 kb]   (164 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: خودروهای خودران

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بین‌المللی مهندسی خودرو می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Automotive Science and Engineering

Designed & Developed by : Yektaweb