B. Jafari, D. Domiri Ganji,
Volume 3, Issue 2 (6-2013)
Abstract
Air pollution is one of the major issues about the diesel engines in todays' world. It is a special concern in
those areas that have difficulty meeting health-based outdoor air quality standards. Natural gas has low
emission and resource abundance and also conventional compression ignition engine can be easily
converted to a dual fuel mode to use natural gas as main fuel and diesel as pilot injection. The main object
of this work is to investigate the effect of number of injector nozzle hole on the combustion and exhaust
emission in a gas engine ignited with diesel fuel. We use one and three-dimensional simulation in parallel
way in order to analyze the performance and combustion process of a dual fuel engine. The experimental
results have also reported and compared with the simulated data.
Yasin Babajanpour, Davood Domiri Ganji, Saber Gholipour,
Volume 10, Issue 1 (3-2020)
Abstract
Use of natural gas has been proposed as one of the solutions to reduce fossil fuel consumption such as petrol and gasoline, which emit more pollutants. In this regard, more attention has been directed toward use of natural gas due to its high calorific value and low pollution. This paper studies the effect of different fluid rotation coefficients in parallel form with a surface of a piston bowl (Swirl). And, it attempts to explore the changing effects of this indicator on power and major pollutants of sparking ignition gas engines. Three-dimensional computational fluid dynamics are employed to simulate the procedure. Open-cycle engine, the moment between air-intake-valve opens and the exhaust-valve opens, is simulated through applying combustion equations of turbulence and emissions. First, the results are validated based on experimental data. Then, an analysis of different rotation coefficients is used to compare the temperature and pressure inside the cylinder, productivity, and the amount of generated pollution. The results demonstrate that changing the shape of entrance port, which leads to concomitant change in the fluid rotation rate in the chamber, causes a slight change in the output power. But, the change has a significant impact on the production of pollutants.