Search published articles


Showing 2 results for Gharehghani

Behzad Borjian Fard, Ayat Gharehghani, Bahram Bahri,
Volume 11, Issue 2 (6-2021)
Abstract

Reactivity control compression ignition (RCCI) engines have demonstrated high-efficient and clean combustion but still suffer from ringing operation at upper load and production of unburned hydrocarbon (uHC) and carbon monoxide (CO) emissions at lower load. In this study, statistical analysis and experimental testing were conducted to consider the effects of input parameters such as intake temperature (Tin), equivalent ratio (Φ) and engine speed on emissions, combustion noise and performance of a 0.5 liter RCCI engine using response surface method (RSM) with the aim to minimize emissions and combustion noise and to maximize parameters of performance. The developed models for measured responses like uHC, CO, nitrogen oxides (NOx) and calculated responses such as indicated mean effective pressure (IMEP) and combustion noise level (CNL) were statistically considered to be significant by analysis of variance (ANOVA). Interactive effects between Tin, Φ and engine speed for all operating points were analyzed by 3-D response surface plots. The results from this study indicated that at optimum input parameters, the values of uHC, CO, NOx, IMEP and CNL were found to be 90.3 (ppm), 106.8 (ppm), 248.2 (ppm), 11.7 (bar) and 87 (db), respectively. The models were validated by confirmatory tests, indicating the error in prediction less than 5%.
Mr Amirhossein Jazari, Prof Ayat Gharehghani, Mr Soheil Saeedipour,
Volume 14, Issue 3 (9-2024)
Abstract

A novel liquid cooling system for pouch-type lithium-ion batteries (LIBs) is proposed by focousing on uniform temperatue disturbution and effective heat dissipation. The system utilizes a michrochannel cold plate with an innovative coolant disturbution design. This study proposes a novel microchannel disturbution path design with each microchannel dimensioning 1 mm2 and embeded in the battery's ciritical region to enhance the thermal contact among the LIB and the microchannels. This study aims to simulate and evaluate the performance of cooling system under varius Iranian environmental conditions (Tehran, Shiraz, Isfahan, and Bandar Abbas) and operational parametrs (channel pattern, flow rate) to achieve optimal battery temperature and reduce energy consumption.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb