Search published articles


Showing 3 results for Kalhor

M. Bostanian, S. M. Barakati, B. Najjari, D. Mohebi Kalhori,
Volume 3, Issue 3 (9-2013)
Abstract

Hybrid Electric Vehicles (HEVs) are driven by two energy convertors, i.e., an Internal Combustion (IC) engine and an electric machine. To make powertrain of HEV as efficient as possible, proper management of the energy elements is essential. This task is completed by HEV controller, which splits power between the IC engine and Electric Motor (EM). In this paper, a Genetic-Fuzzy control strategy is employed to control the powertrain. Genetic-Fuzzy algorithm is a method in which parameters of a Fuzzy Logic Controller (FLC) are tuned by Genetic algorithm. The main target of control is to minimize two competing objectives, consisting of energy cost and emissions, simultaneously. In addition, a new method to consider variations of Battery State of Charge (SOC) in the optimization algorithm is proposed. The controller performances are verified over Urban Dinamometer Driving Cycle (UDDS) and New Europian Driving Cycle (NEDC). The results demonstrate the effectiveness of the proposed method in reducing energy cost and emissions without sacrificing vehicle performance.
A. Mirmohamadi, Sh. Alyari Shoreh Deli, A. Kalhor,
Volume 6, Issue 1 (3-2016)
Abstract

According to the Global Fuel Crisis, it seems necessary to use alternative fuel instead of gasoline. Since the natural gas is cheaper, have higher frequency than gasoline and less pollution, it is a suitable fuel. Many efforts have been done in order to replace gasoline with natural gas. One of the methods is to inject natural gas and gasoline fuel simultaneously and to use the benefits of both fuels. The purpose of this paper is studying natural gas and gasoline blend effect on engine power, torque and emissions. The simulated model was validated in different engine RPMs for gasoline and natural gas, were separately injected into the engine at full load condition. The results of simulation was had good agreement with experiments. The results show that by natural gas and gasoline Simultaneous injection power and torque have been reduced. NOX, HC and CO2 Pollutants change periodically, but their production level is generally lower than gasoline mode, but the CO pollutant increases.


Dr. Ali Mirmohammadi, Eng. Amin Kalhor,
Volume 9, Issue 4 (12-2019)
Abstract

According to the global air pollution Crisis, it seems necessary to finding a way for cars pollutions. The Combination of alcoholic fuels with gasoline is one of the methods to reduce pollutions. For optimizing engine performance, fuel availability, toxicity and political advantage, a blend of ethanol, methanol and gasoline is likely to be preferable to using any of these individual substances alone. So the purpose of this paper is studying methanol, ethanol and gasoline blend effect on engine emissions at different engine speed. The simulated model was validated in different RPMs of gasoline engine at full load condition. The effect of combined fuel injection in the simulated model was investigated and compared with the experimental results. The results of simulation have good agreement with experiments. The results show that by ethanol and methanol with gasoline blend CO and HC emissions are lower than gasoline mode, but the NOx and CO2 pollutants increases.
 

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb