Search published articles


Showing 2 results for Milani

S. A. Milani, S. Azadi,
Volume 4, Issue 4 (12-2014)
Abstract

Nowadays, the use of small vehicles is spreading among urban areas and one sort of these vehicles are three-wheeled vehicles (TWVs) which can be competitive with four-wheeled urban vehicles (FWVs) in aspects such as smallness, simple manufacturing, and low tire rolling resistance, fuel consumption and so on. The most critical instability associated with TWVs is the roll over. In this paper a tilt control mechanism has been modeled which can reduce the danger of roll over by leaning the vehicle towards the turning center in order to decrease the amount of lateral load transfer (LLT), and by doing so, system combines the dynamical abilities of a passenger car with a motorcycle. A 3 degree of freedom vehicle model is simulated at constant speed in MATLAB-Simulink environment and a fuzzy algorithm is developed to control such a non-linear system with appropriate tilting torque. Results are interpreted in presence and absence of controller with different longitudinal speeds and steering inputs the results are also compared to behavior of a similar FWV and this is concluded that the tilt control system could countervail deficiencies of the TWV compared to the FWV.
Eng. Seyyed Ali Akbar Hashemi Milani, Dr. Reza Tavangar, Dr. Maziyar Azadbeh, Eng. Ibrahim Kahinpoor, Eng. Hossein Sadeghi-Nasab,
Volume 10, Issue 4 (12-2020)
Abstract

Drying temperature of the flux at normal atmosphere has a crucial role in brazing quality in automotive aluminum-based heat exchangers. Over the course of this research, NOCOLOK® flux consists of two phases of K2AlF5.H2O and KAlF4 with melting point around 580 °C was used. A flux slurry was applied on the base metal, and dried at 220, 300 and 380 °C in air. Mechanical assessment revealed that when flux dried at 300 °C, the joint withstands maximum shear stress of 44 MPa with complete bonding. At 220 °C and 380 °C, joint shear stresses are 34 MPa, 30 MPa respectively. 380 °C dry-off temperature under nitrogen gas improved shear strength to 39 MPa. Taking dry-off temperature as 300 °C the amount of defective heat exchangers was reduced from 6% to 2% on a daily basis.
 

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb