Search published articles


Showing 2 results for Mohammadi Soleymani

Ali Akbar Majidi-Jirandehi, Moslem Mohammadi Soleymani, Hossein Dehghani,
Volume 11, Issue 3 (9-2021)
Abstract

Today, many car manufacturers can achieve emission standards through catalytic converters. The goals of this research was in tow sections. Initially, the amount of pollutants was measured to determine the role of the catalytic converters in the reduction of pollutants for 3 types of vehicles and in 50 cases, in the two stages before and after the catalytic converter. Then, to achieve the useful life of the catalytic converter, out of 750 test vehicle emissions were tested. Data analysis was done by SPSS software, which shows that catalytic converters can reduce up to 80% of exhaust emissions. This is independent of the type of vehicle. The useful life of the catalytic converters is up to 36 months, so they should be replaced at least every three years. Also, the pollutant standards of the technical examination centers are reviewed. For this purpose, the pollutants have been measured in 2200 vehicles. Due to the huge difference in technology, cars are divided into two main categories of carburetor and injector and are analyzed statistically. Eventually, for each group of these vehicles, the values of HC, CO and O2 are obtained.
Dr Moslem Mohammadi Soleymani, Benyamin Sohrabinejad, Dr Aliakbar Majidi Jirandehi,
Volume 14, Issue 2 (6-2024)
Abstract

In the automobile sector, stainless steel and resistance spot welding (RSW) are often used. In this work, RSW was used to join five samples of 316L stainless steel joints at currents of 15, 20, 25, 30, and 35 kA while the heat input parameters varied. The welded joints' microstructure, hardness, and mechanical properties were examined and evaluated. The base metal, heat-affected zone (HAZ), and weld areas' microstructures were all examined using optical microscopy. The mechanical characteristics of the joints were assessed using room-temperature tensile-shear testing and hardness testing. The microstructure findings revealed ferrite in many weld regions and an austenitic structure overall. In the samples with welding currents of 15, 20, 25, 30, and 35 kA, the average hardness of the weld zone was 329, 258, 251, 238, and 235 Vickers, in that order. The hardness of the weld zone exhibited an inverse connection with the welding current, as an increase in welding current resulted in a drop in the resistance spot welded area's hardness. Furthermore, when heat input increased, the hardness of the HAZ reduced and increased relative to the 316L steel. The joint strength of the RSW increased with increasing welding current, as demonstrated by the tensile-shear test results for all five welded samples with varying currents. As a result, the samples with 30 and 35 kA currents failed at the weld with a force greater than 3 kN, while the other samples with lower welding currents had a failure force of less than 2 kN.
 

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb