S.r Das, R.p. Nayak, D. Dhupal, A. Kumar,
Volume 4, Issue 3 (9-2014)
Abstract
The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate
and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in
hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined
effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) are explored employing the
analysis of variance (ANOVA). An L9 Taguchi standard design of experiments procedure was used to
develop the regression models for machining responses, within the range of parameters selected. Results
show that, feed rate has statistical significance on surface roughness and the machining force is influenced
principally by the feed rate and depth of cut whereas , cutting speed is the most significant factor for flank
wear followed by cutting speed. The desirability function approach has been used for multi-response
optimization. Based on the surface roughness, machining force and flank wear, optimized machining
conditions were observed in the region 147 m/min cutting speed and 0.10 mm/rev feed rate and 0.6 mm
depth of cut.