Search published articles


Showing 24 results for Diesel

Dr Javad Zareei, Abbas Rohani,
Volume 11, Issue 2 (6-2021)
Abstract

Diesel engines are the most trusted sources in the transportation industry. They are also widely used in the urban transportation system. Most pollutants are related to these engines. Therefore, it is important to increase the performance and reduce exhaust emissions of these engines. Alternative fuels are key to meeting upcoming targets.
An experimental and numerical study was performed to investigate the effect of diesel fuel and hydrogen addition to diesel fuel from 0 to 30% on performance and exhaust emissions. Also in this research for changing diesel fuel, an indirect injection engine converted to direct injection engine. The simulation study was conducted by Star cd codes and experimental investigation was carried out on a diesel engine (Perkins 1103A-33TG1), three- cylinders, and four-stroke with maximum engine power 72.3hp at 1800 rpm. The results from this study showed that the increase of hydrogen to diesel fuel improves the thermal efficiency, resulting in lower specific fuel consumption. Also, the results showed that adding hydrogen until 30%, the cylinder pressure increase by about 9% and occurred the delay of peak pressure about 8 degrees of a crank angle compared to diesel fuel. The other obtained results in emission with 30%H2+Diesel showed the soot emission reduced 11.3%, HC and CO reduced nearly 36%, but NOx increased by about 8.3% due to high combustion temperature.
Mr. Saeed Chamehsara, Mr. Mohammadreza Karami,
Volume 11, Issue 4 (12-2021)
Abstract

Many efforts have been made to increase power and reduce emissions from internal combustion engines. For this purpose, the internal combustion engine subsystems are examined via many studies, and the effective parameters in each of them are analyzed. One of these subsystems is the air inlet and outlet to the combustion chamber, the most important part of which is the manifold. In the present study, using one-dimensional modeling of the OM457 heavy diesel engine in the GT SUITE software environment, the effect of geometric parameters of cylinder runner’s length - cylinder runner’s transverse distance as well as plenum’s depth on the performance and the emissions of this engine has been investigated. During this study, it was concluded that increasing the volume of the plenum not only improves the engine’s output but also reduces the emission of pollutants produced. Also, increasing the length of the cylinder runner increased the engine power. The change in the transverse distance of the cylinder runners did not have a significant effect on the power and pollutants of the sample engine. It was also observed that in similar geometric changes, the effect of changing the input manifold is significantly greater than the output manifold level.
Adel Basiri, Ebrahim Amini,
Volume 12, Issue 1 (3-2022)
Abstract

The objective of the present paper is to assess the capability of several classical damage models in prediction of service lifetime of engine components subjected to Thermo-mechanical Fatigue (TMF) loading. The focus of the present study is based on efficient and robust predictive tools which are suitable in industrial development process, thus the classical fatigue damage models are selected to perform such a tsk. In the classical framework, three strain-based models including Manson-Coffin, Smith-Watson-Topper and Ostergren models and one plastic strain energy-based model are examined. Besides, some correction factors are added to the Manson-Coffin, Ostergren and plastic strain energy models regarding the mean stress and temperature effects. The statistical analysis of the models is carried out utilizing the Low-cycle fatigue and Thermo-mechanical Fatigue tests on standard specimens of A356 aluminum alloy. The analysis indicated that modified Ostergren model is the most reliable model in fatigue lifetime description of the A356 alloy among the others. The studied engine component is a passenger-car diesel engine cylinder head made of A356 aluminum alloy. The temperature, stress and strain distribution fields of the component are considered as the given boundary conditions from our previous work as they are not in the scope of the present investigation. The selected damage models based on the best accuracy identified during statistical analysis are introduced into the ABAQUS software. The modified Ostergren model presented the most accurate and realistic results based on empirical observations of fatigue crack area in diesel engine cylinder heads studied in the literature.

Abbas Zarenezhad Ashkezari, Reza Zirak,
Volume 13, Issue 2 (6-2023)
Abstract

In the present study, different regimes of wall impingement in biodiesel spray were investigated in terms of emissions of diesel engines and performance and the best model for simulating the DI diesel engines fueled by biodiesel blends was presented. As shown by the findings, all aspects of wall impingement were considered in Walljet model, and it properly predicted the fuel droplet size generated by decomposition and penetration. Thus, it is possible to use it for simulating the biodiesel fuel spray atomization at varying engine operating conditions through the adjustment of the model constants.
 

Page 2 from 2     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb