Search published articles


Showing 67 results for Vehicle

Dr. Mohammad Salehpour, Dr. Ahmad Bagheri,
Volume 11, Issue 3 (9-2021)
Abstract

In this study, a multi-objective differential evolution with fuzzy inference-based dynamic adaptable mutation factor with hybrid usage of non-dominated sorting and crowding distance (MODE-FM) is utilized for Pareto optimization of a 5-degree of freedom nonlinear vehicle vibration model considering the five conflicting functions simultaneously, under different road inputs. The significant conflicting objective functions that have been observed here are, namely, vertical seat acceleration, vertical forward tire velocity, vertical rear tire velocity, relative displacement between sprung mass and forward tire and relative displacement between sprung mass and rear tire. Different road inputs are, namely, double-bump, stationary random road and non-stationary random road. It is exhibited that the optimum solutions of 5-objective optimization contain those of 2-objective optimization and, as a result, this important matter creates more options for optimal design of nonlinear vehicle vibration model.
Mr Mohamadreza Satvati, Dr Abdolah Amirkhani, Dr Masoud Masih-Tehrani, Mr Vahid Nourbakhsh,
Volume 11, Issue 4 (12-2021)
Abstract

This paper experimentally investigates the trafficability of a small tracked vehicle on a slope. An increase in the angle of slope inclination may divert the vehicle from its path. In other words, the deviation of the vehicle is due to a sudden increase in the yaw angle. Also, the tip-over occurs at a specific slope angle. The locomotion of the small tracked vehicle on soils with different terramechanics (such as cohesion, internal friction angle, cohesive modulus, and friction modulus) is also simulated to evaluate its slope-traversing performance. Moreover, the impact of velocity and soil type on traversing a slope is measured. The proposed yaw angle control system is modeled for controlling the yaw angle of the tracked vehicle. This controller is designed through co-simulation. It keeps the tracked vehicle at zero yaw angle to achieve straight locomotion on slopes. It is compared to the PI, PID, and fuzzy controllers. The response of this controller is faster than PI and PID controllers. A Comparison between fuzzy and proposed yaw angle controller yields almost similar responses. The mechanism of the proposed yaw angle controller is also easier to understand. The precision of the controller's performance is measured by simulating over different terrains.
Farhad Pashaei, Seyed Mahdi Abtahi,
Volume 11, Issue 4 (12-2021)
Abstract

In this paper, firstly chaotic behavior of the lateral dynamics of vehicle is investigated by the use of numerical tools including Lyapunov exponent and bifurcation diagrams. To this end rout to chaos along with period doubling and quasi-periodic responses are demonstrated in terms of bifurcation diagrams. After chaos analysis, a novel controller commensurate with the chaotic characteristics of the system, in conformity with Poincaré map is represented to suppress the chaotic behavior of lateral movement. The Poincaré map of the system is derived by means of a neuro fuzzy network. A robust Fuzzy system on the basis of nonlinear Ott-Grebogi-Yorke (OGY) method forms the control system. Closed-loop results of the system shows effectiveness of the chaos controller in extreme conditions.
Abolfazl Ghanbari Barzian, Mohammad Saadat, Hossein Saeedi Masine,
Volume 12, Issue 1 (3-2022)
Abstract

Environmental pollution and reduction of fossil fuel resources can be considered as the most important challenges for human society in the recent years. The results of previous studies show that the main consumer of fossil fuels and, consequently, most of the air pollutants, is related to the transportation industry and especially cars. The increasing growth of vehicles, the increase in traffic and the decrease in the average speed of inner-city vehicles have led to a sharp increase in fuel consumption. To address this problem, automakers have proposed the development and commercialization of hybrid vehicles as an alternative to internal combustion vehicles. In this paper, the design of an energy management system in a fuel-cell hybrid vehicle based on the look-ahead fuzzy control is considered. The preparation of fuzzy rules and the design of membership functions is based on the fuel efficiency curve of the fuel-cell. In look-ahead fuzzy control, the ahead conditions of the vehicle are the basis for decision in terms of slope and speed limit due to path curves as well as battery charge level. The fuzzy controller will determine the on or off status of the fuel-cell, as well as the power required. The motion of the fuel-cell hybrid vehicle on a real road is simulated and the performance of the proposed look-ahead controller is compared with the base controller (thermostatic method). The simulation results show that using the proposed approach can reduce the fuel consumption of the fuel-cell hybrid vehicle as well as travel time.
Mansour Baghaeian, Yadollah Farzaneh, Reza Ebrahimi,
Volume 12, Issue 1 (3-2022)
Abstract

In this paper, the optimization of the suspension system’s parameters is performed using a combined Taguchi and TOPSIS method, in order to improve the car handling and ride comfort. The car handling and ride comfort are two contradictory dynamic indices; therefore, to improve both car handling and ride comfort, there is a need for compromising between these two indices. For this purpose, the criteria affecting these two are first identified. The lateral acceleration and the body roll angle were used to evaluate the handling, and the RMS of vertical acceleration of the vehicle body was used to evaluate the ride comfort. The design factors including stiffness of springs and damping coefficient of dampers in the front and rear suspension system were also taken into account. On this basis, the results obtained from the vehicle’s motion in the DLC test were evaluated in the CarSim software. Then, the ideal tests were identified using the combined entropy and TOPSIS technique; this method has been proposed for managing the handling and ride comfort criteria. Finally, the optimal level of the suspension system’s factors was extracted using Taguchi method. It is evident from the results that, for different speeds, the body roll angle was improved up to 6.5%, and the RMS of the vertical acceleration of the vehicle body was optimized up to 4% to 7%.
Hashem Ghariblu,
Volume 12, Issue 2 (6-2022)
Abstract

This paper introduces a trajectory planning algorithm for long-term freeway driving for autonomous vehicles including different modes of motion. In the autonomous driving in a freeway, different maneuvers are needed, including free flow, distance adaption, speed adaption, lane change and overtaking. This paper introduces an algorithm that provides all of these driving scenarios in the trajectory planning for an autonomous vehicle. All maneuvers are classified and proper formulation for each driving mode formulated. Then, an algorithm is introduced to show the procedure of decision making and switching between all driving modes. The relative distances and velocities of the other peripheral and front vehicle from autonomous vehicle are considered as the main factors for decision making during the travelling in the freeway. By the developed simulation programming, validity and effectiveness of the algorithm are verified, and pseudo code and flowchart for the simulation programming are introduced. Later in two simulation studies, different driving conditions are generated and results have been discussed and analyzed by detail.
Hossein Chehardoli,
Volume 12, Issue 2 (6-2022)
Abstract

The adaptive size-independent consensus problem of uni-directional (UD) and bi-directional (BD) decentralized large-scale vehicle convoys with uncertain dynamics has been investigated in this research work. The constant distance plan (CDP) is employed to adjust the distances between successive vehicles. We assume that only relative displacement information between adjacent vehicles is accessible (partial measurement) and other information such as relative velocity and acceleration are not provided. The stability of the convoy can be performed by the analysis of each couple of consecutive vehicles. The main objective is to design an adaptive size-independent control protocol maintaining internal and string stability based on CDP with only partial measurement. Appropriate adaptive rules are derived to estimate the uncertain dynamics by utilizing only relative displacement. It will be proved that the presented adaptive protocol assures both internal stability (asymptotic stability of closed-loop convoy) and string stability (tracking error attenuation) of large-scale decentralized UD and BD convoys under the CDP. Simulations demonstrate the efficiency of the presented control framework.


Dr Morteza Mollajafari, Mr Alireza Rajabi Ranjbar, Mr Shayegan Shahed Haghighi,
Volume 12, Issue 3 (9-2022)
Abstract

The development and adoption of electric vehicles (EVs) appears to be an excellent way to mitigate environmental problems such as climate change and global warming exacerbated by the transportation sector. However, it faces numerous challenges, such as optimal locations for EV charging stations and underdeveloped EVCS infrastructure, among the major obstacles. The present study is based on the location planning of charging stations in real cases of central and densely populated districts of Tehran, the capital of Iran. In order to achieve this goal, this paper attempts to validate the results of a previous study in another country. Secondly, by employing preceding principals in accordance with relevant information collected from the car park and petrol stations in the regions of study, a five-integer linear program is proposed based on a weighted set coverage model considering EV users' convenience, daily life conditions, and investment costs, and finally optimally solved by genetic algorithm under various distribution conditions; normal, uniform, Poisson and exponential, to specify the location and number of EV charging stations in such a way that EV drivers can have access to chargers, within an acceptable driving range.
Vahid Nooraeefar, Nader Nariman-Zadeh, Abolfazl Darvizeh,
Volume 12, Issue 3 (9-2022)
Abstract

Connecting point of the longitudinal veins and cross-veins in wing is called Joint.  In some insect wing joints, there is a type of rubber-like protein called Resilin. Due to the low Young's modulus of this protein, its presence in the wing can help to change the shape of the wing during flight. Today, using composite structures in flying vehicles in order to achieve the desired shape of wing is considered. The purpose of this study is the multi-objective optimization of artificial wing by arranging Resilin joints in the artificial wing of Micro air vehicles (MAVs). The amount of torsion and bending of the flapping robot wings is considered as the objective function to improve the flight performance of robots. Two types of artificial wings have been investigated, and considering pareto points, the optimal arrangement of Resilin joints has been achieved.  The result of this study shows that in both wings, with the presence of Resilin in the joints, the amount of torsion has increased to 38.65 degrees.
 
Mohammed Khalifa Al-Alawi, Dr. Kamyar Nikzadfar,
Volume 12, Issue 4 (12-2022)
Abstract

Electric vehicles are attaining significant attention recently and the current legislation is forcing the automotive industry to electrify the productions. Regardless of electric energy accumulation technology, drive technology is one of the vital components of EVs. The motor drive technology has been mainly developed based on the application which required position/velocity control. In automotive application, however, torque control is an important aspect since the drivers have already used to drive the vehicle based on torque control approach in traditional powertrain system. In this article, a model-based approach is employed to develop a controller which can guarantee the precise control of the induction motors torque for a micro electric vehicle (EV) application regardless of operating conditions. The implementation of the control drive was conducted in MATLAB/Simulink environment, followed by Model In the Loop simulation and testing at various test conditions to confirm the robustness of the developed drive. Direct Torque Control (DTC) with optimum voltage vector selection method is employed to control the motor torque that requires fewer power electronics to process its operation and hence lowers the cost of implementation. The result shows the practicality of the designed control system and its ability to track reference torque commands. Vitally, the controlled approach shows fair abilities to control IMs to produce torque at both the motoring and regenerative modes which is a highly important requirement in electrical propulsion powertrains. Furthermore, the controller’s response time was within the industrial standard range which confirms its suitability for industrial implementation at low cost.
Mr. Mohammad Yar-Ahmadi, Mr. Hamid Rahmanei, Prof. Ali Ghaffari,
Volume 13, Issue 1 (3-2023)
Abstract

The primary purpose of each autonomous exit parking system is to facilitate the process of exiting the vehicle, emphasizing the comfort and safety of driving in the absence of almost any human effort. In this paper, the problem of exit parking for autonomous vehicles is addressed. A nonlinear kinematic model is presented based on the geometric relationship of the vehicle velocities, and a linear time-varying discrete-time model of the vehicle is obtained for utilizing the optimal control strategy. The proposed path planning algorithm is based on the minimization of a geometric cost function. This algorithm works for ample space exit parking in Single-Maneuver and tight spaces in Multi-Maneuver exit parking. Finally, an optimal discrete-time linear quadratic control approach is hired to minimize a quadratic cost function. To evaluate the performance of the proposed algorithm, the control system is simulated by MATLAB/Simulink software. The results show that the optimal control strategy is well able to design and follow the desired path in each of the exit parking maneuvers.

Dr Hossein Chehardoli,
Volume 13, Issue 1 (3-2023)
Abstract

In this paper, the consensus of second-order nonlinear self-driving vehicle convoys (SDVCs) is studied. We assume that each self-driving vehicle (SDV) communicates only with one front and one rear SDVs. Each SDV’s nonlinear dynamics consisting of the rolling resistance and the air drag force is a function of SDV’s speed and is investigated in SDVC’s modeling and consensus design. Since the speed is bounded, all vehicles’ nonlinearities are also bounded. Due to engine saturation of each SDV, the control input is limited. We involve this limitation by introducing the arctan(.) function to control protocol. The inter-SDV’s distances are assumed to be constant during motion. The distance tracking error associated with each SDV is defined as distance between it and the leading SDV. The error dynamics of the proposed SDVC is derived after applying the consensus law to each SDV. To prove the internal stability, the Lyapunov theorem is employed. We will prove that under this consensus algorithm, the SDVC will be internal stable. To validate the effectiveness of this method, a SDVC comprising a leading and 6 following SDVs will be studied. It will be verified that under the proposed consensus law, all the SDVs reach a unique consensus.
Ali Modarresi, Saman Samiezadeh, Ali Qasemian,
Volume 13, Issue 1 (3-2023)
Abstract

In recent years, the automotive industry has experienced a dramatic mutation in the develop ment of electric vehicles. One of the most important aspects of this type of vehicle is its thermal management. Among the various parts of an electric vehicle that are subjected to thermal management, the battery is of particular importance. Battery cell temperatures may exceed the allowable range due to continuous and high-pressure operation and various weather conditions, and this, in addition to performance, severely affects battery life. Therefore, the appropriate cooling system is essential. In this research, the most common methods of battery cooling are investigated. First, three-dimensional thermal analysis on the battery is performed using the computational fluid dynamics method in transient and steady-state phases.  Then, the effect of changing the cooling flow rate on the maximum temperature of the battery cell as well as the temperature difference of the cells in the battery pack is investigated. The effect of changing inlet coolant temperature change on battery cell temperature distribution is also investigated. The results show that by increasing the flow rate from 0.5 to 1.2 liter per minute, the maximum temperature in the battery pack and the temperature difference between the cells decrease to 44.4 and 2.51 ° C, respectively. Also, by changing the temperature of the inlet coolant from 15 to 30 ° C, the maximum temperature in the battery pack increases up to 42.2 ° C and the temperature difference is negligible.
Mr. Hamid Rahmanei, Dr. Abbas Aliabadi, Prof. Ali Ghaffari, Prof. Shahram Azadi,
Volume 13, Issue 2 (6-2023)
Abstract

The coordinated control of autonomous electric vehicles with in-wheel motors is classified as over-actuated control problems requiring a precise control allocation strategy. This paper addresses the trajectory tracking problem of autonomous electric vehicles equipped with four independent in-wheel motors and active front steering. Unlike other available methods presenting optimization formulation to handle the redundancy, in this paper, the constraints have been applied directly using the kinematic relations of each wheel. Four separate sliding mode controllers are designed in such a way that they ensure the convergence of tracking errors, in addition to incorporating the parametric and modeling uncertainties. The lateral controller is also designed to determine the front steering angles to eliminate lateral tracking errors. To appraise the performance of the proposed control strategy, a co-simulation is carried out in MATLAB/Simulink and Carsim software. The results show that the proposed control strategy has enabled the vehicle to follow the reference path and has converged the errors of longitudinal and lateral positions, velocity, heading angle, and yaw rate. Furthermore, the proposed control system shows promising results in the presence of uncertainties including the mass and moment of inertia, friction coefficient, and the wind disturbances.

Mr Arash Darvish Damavandi, Dr Behrooz Mashhdi, Dr Masoud Masih-Tehrani,
Volume 13, Issue 3 (9-2023)
Abstract

This paper investigates the performance of the hydraulically interconnected suspension system with the full vehicle model of ride and handling. A sensitivity analysis has been performed by changing the coefficients of the cylinder and accumulator valves and the initial conditions of the accumulators in the default hydraulic circuits to determine the effect on the frequency and damping of the system response such as roll, pitch, and bounce. This study highlights the importance of the influence of all system parameters to investigate vehicle vibration characteristics. The results provide valuable insights for designers and engineers working on improving automotive suspension system performance. Damping and frequency of modes change up to 179% with the change of cylinder valves and 141% with the change of accumulator valves and 74% for the initial pressure of accumulators change in mentioned range.
Mustafa Mirtabaee, Mohammad Abasi,
Volume 13, Issue 4 (12-2023)
Abstract

Protection of Armor Vehicles and military truck Occupants Against Explosion Mine and IED is the most important Parameter for comprehensive performance evaluation of armored vehicle. Armored Vehicle components Specifically Hull Floor Must be Able to Disperse Blast Shock Waves and Resist Against the structural Fracture. Analysis of the War Documents proves that flat hulls with thin-walled steel cannot resist against Anti-Tank Mines. In Recent years, development of V-shape Hull configurations Consider as an efficient Approach to improve Safety of armored vehicles. In the new generation of Armor Vehicle, Monocoque chassis combined with V-shape hull, But Replacement of All of the Old Armor Vehicle in the Defense Industry is not cost effective. So, there is an urgent need to develop the efficient strategy for enhancing the protection level of old armor vehicle. Since most of the armored vehicles used in the armies of different countries were designed and built in the past years, it is very likely that the safety standards have not been fully observed in them. Therefore, it is of great importance to provide a simple and low-cost plan for the reliable upgrade of such armored and logistics vehicles. In this article, by investigating the effect of placing V-shaped composite panels in three case studies, we were able to reduce the acceleration of the center of mass of the passenger compartment by approximately 7 times, in addition to reducing displacement by 50% on average. In addition, the explosion products were not able to penetrate into the cabin.

Dr. Pezhman Bayat, Dr. Peyman Bayat, Dr. Abbas Fattahi Meyabadi,
Volume 14, Issue 1 (3-2024)
Abstract

The hydrogen fuel cell is one of the latest technologies used in fuel cell electric vehicles (FCEVs), which uses hydrogen gas to supply the electrical energy needed by the electric engines. The proposed topology has boost function and uses a novel diodes and switches network, which leads to the creation of an integrated system with high efficiency and high voltage gain. Other advantages of the proposed converter are small size, low voltage and current stresses on all the components, less component count, continuous input current and light weight; which makes it more efficient compared to existing structures. In this regard, theoretical calculations and steady state analysis for the proposed system have been presented. Also, in order to verify the performance of the proposed converter, it has been simulated in the MATLAB/Simulink software environment at the rated power of 1kW, with an output voltage of 220V and an output current of 4.55A, and the results have been presented in detail. The peak efficiency of the proposed converter reached 97.4% at half power, and the efficiency at rated power was reported 96%. Moreover, in the proposed structure, the voltage stress of capacitors, diodes and switches reaches the maximum value of 63%, 83% and 41% of the output voltage, respectively; which are promising values. Finally, to verify the performance of the proposed converter and the relationships obtained, a 1kW prototype is built in the laboratory to demonstrate the efficiency of the proposed converter.
 
Seied Isa Koranian, Mahdi Gholampour, Hamid Mazandarani,
Volume 14, Issue 1 (3-2024)
Abstract

Harnessing nanomaterials and the piezo-phototronic effect, we engineered a high-performance ultraviolet (UV) photodetector (PD), unveiling a new frontier in optoelectronics. This novel device seamlessly integrates zinc oxide nanorods (ZnO NRs) onto a flexible polyethylene terephthalate- indium tin oxide (PET-ITO) substrate through a straightforward and efficient hydrothermal process. This unique nanostructure design outshines its competitors, producing significantly higher current under UV illumination despite a comparable detection area. The plot thickens with the intriguing "piezo-phototronic effect," where applying pressure under UV light amplifies the current and overall device efficiency. This groundbreaking discovery paves the way for cutting-edge optoelectronic applications, where nanomaterials and the piezo-phototronic effect join forces to redefine performance.
 
Mr Seyed Amir Mohammad Managheb, Mr Hamid Rahmanei, Dr Ali Ghaffari,
Volume 14, Issue 1 (3-2024)
Abstract

The turn-around task is one of the challenging maneuvers in automated driving which requires intricate decision making, planning and control, concomitantly. During automatic turn-around maneuver, the path curvature is too large which makes the constraints of the system severely restrain the path tracking performance. This paper highlights the path planning and control design for single and multi-point turn of autonomous vehicles. The preliminaries of the turn-around task including environment, vehicle modeling, and equipment are described. Then, a predictive approach is proposed for planning and control of the vehicle. In this approach, by taking the observation of the road and vehicle conditions into account and considering the actuator constraints in cost function, a decision is made regarding the minimum number of steering to execute turn-around. The constraints are imposed on the speed, steering angle, and their rates. Moreover, the collision avoidance with road boundaries is developed based on the GJK algorithm. According to the simulation results, the proposed system adopts the minimum number of appropriate steering commands while incorporating the constraints of the actuators and avoiding collisions. The findings demonstrate the good performance of the proposed approach in both path design and tracking for single- and multi-point turns.
Seied Isa Koranian, Mahdi Gholampour, Hamid Mazandarani,
Volume 14, Issue 2 (6-2024)
Abstract

Fueled by their potential for energy harvesting, ZnO nanorods (NRs) have sparked considerable enthusiasm in the development of piezoelectric nanogenerators in the last decade. This is attributed to their exceptional piezoelectric properties, semiconducting nature, cost-effectiveness, abundance, chemical stability in the presence of air, and, the availability of diverse and straightforward crystal growth technologies. This study explores and compares the piezoelectric properties of two promising nanostructured ZnO architectures: thin films deposited via radiofrequency (RF) magnetron sputtering and well-aligned nanorod arrays grown using a hydrothermal process. Both structures are fabricated on flexible polyethylene terephthalate (PET) with an indium tin oxide (ITO) electrode (PET-ITO substrate), presenting valuable options for flexible piezoelectric devices. By directly comparing these distinct morphologies, we provide insights into their respective advantages and limitations for energy harvesting and sensor applications. The investigation into the piezoelectric properties of ZnO NRs involved the construction of an actual piezoelectric nanogenerator. This device demonstrated a direct correlation between applied mechanical forces and the resultant voltage outputs. It was observed that when the same external force was applied to both devices, the ZnO NRs-based piezoelectric nanogenerator (PENG) exhibited a higher output voltage compared to the other device.

Page 3 from 4     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb