Search published articles


Showing 2 results for Doe

Mohammad Reza Azmoodeh, Prof. Ali Keshavarz, Alireza Batooei, Hojjat Saberinejad, Mohammad Payandeh Doost, Hossein Keshtkar,
Volume 10, Issue 3 (9-2020)
Abstract

A multi-objective optimization and thermal analysis is performed by both experimental and numerical approaches on a Stirling engine cooler and heater. The power generated is measured experimentally by an electrical engine coupled with the crank case, and the friction is estimated by the difference between the necessary power used for rotating the engine at a specific pressure and speed, versus the actual power measured experimentally. In the experimental approach, different conditions were considered; for example, the charge pressure varied from 5-9 bars, and the engine speed varied from 286-1146 rpm. The maximum power generated was 461.3 W and was reported at 9 bars of charge pressure and 1146 rpm engine speed. Numerical approach was carried to simulate thermal balance for investigations on the effect of friction, engine speed and efficiency on generated engine power. Average values of Nusselt number and coefficient of friction were suggested from simulation results.
The multi-objective optimization was held using DOE method for maximizing engine efficiency and power, and also minimizing pressure drop. The top and bottom boundary values for our optimization were 5-9 bars of pressure and 286-1146 rpm of engine speed; for both helium and carbon dioxide. To do so, all three significance factors (engine speed, efficiency and friction) were given different weights, thus different combinations of weight value was investigated
Amongst different interesting findings, results showed that if the efficiency weight factor changed from 1 to 3, for helium in a specific condition, the optimum engine speed would increase by approximately 30.6 %
Mr. Esmail Dehghani, Mr. Vahid Rastegar, Dr. Javad Marzbanrad,
Volume 11, Issue 3 (9-2021)
Abstract

In this study, the driver airbag geometry and internal pressure were considered as the main parameters to investigate the head injury severity in a frontal crash. The total energy absorption of an airbag was investigated in a drop test simulation and its rate was discussed by the depression distance parameter. On the other hand, the maximum deceleration of the impactor was determined to represent the airbag stiffness by a defined deceleration peak parameter. Thus, the depression distance and the deceleration peak were the objective functions for an isolated airbag under a lumped-mass impact simulation. Furthermore, an optimal matrix was generated using the design method of experiments (DOE) and yielded the airbag parameters as outputs. After the evaluation of the design parameters by the Taguchi method, the ANOVA method was used to predict the most effective parameters. Finally, a sled test with the 50% HYBRID III dummy and the defined airbag was simulated. An experimental crash was selected as the reference point to verify the simulation and to be used to compare the outcomes. Even though the objective function of depression distance showed contradictory effects to reduce the head injury severity, the results showed a %16.4 reduction in the driver head injury in a full-frontal crash.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb