Search published articles


Showing 4 results for Design of Experiment

M. Abbasi, R. Kazemi, A. Ghafari Nazari,
Volume 1, Issue 3 (5-2011)
Abstract

Parametric design optimization of an automotive body crashworthiness improvement is presented. The thicknesses of parts are employed as design variables for optimization whose objective is to increase the maximum deceleration value of the vehicle center of gravity during an impact. Using the Taguchi method, this study analyzes the optimum conditions for design objectives and the impact factors and their optimal levels are obtained by a range analysis of the experiment results. A full frontal impact is implemented for the crashworthiness simulation in the nonlinear dynamic code, LS-DYNA. The controllable factors used in this study consist of the six inside foreheads structural parts, while design parameters are relevant thicknesses. The most interestingly the maximum deceleration of the vehicle center of gravity is reduced by 20% during a full frontal impact while several parts experience mass reduction.
M. Masih-Tehrani , M.r. Hairi-Yazdi , V. Esfahanian,
Volume 4, Issue 2 (6-2014)
Abstract

In this paper, the development and optimization of Power Distribution Control Strategy (PDCS) have been performed for a Hybrid Energy Storage Systems (HESS) of a Series Hybrid Electric Bus (SHEB). A common PDCS is based on the use of Ultra-Capacitor (UC) pack. A new simple PDCS is developed as a battery based one. For the battery based PDCS, four parameters are introduced for tuning the PDCS performance. The Design of Experiment (DoE) method is utilized to optimize the parameters of the battery based PDCS for the driving cycles and the vehicle controllers. The results show the optimized battery based PDCS performance for some cases are better than the UC based PDCS performance. Vice versa, for some cases the performance of the UC based PDCS is better than the battery based PDCS. Finally, the costs rising from the HESS (about 66%) is reasonable when considering the over double increase in the battery life-time when using an appropriate PDCS.
M. Pasandidehpour, M. Shariyat,
Volume 7, Issue 3 (9-2017)
Abstract

Due to the extensive use of cars and progresses in the vehicular industries, it has become necessary
to design vehicles with higher levels of safety standards. Development of the computer aided design and
analysis techniques has enabled employing well-developed commercial finite-element-based crash
simulation computer codes, in recent years. The present study is an attempt to optimize behavior of the
structural components of a passenger car in a full-frontal crash through including three types of energy
absorptions: (i) structural damping of the car body, (ii) viscoelastic characteristics of the constituent
materials of the bumper, and (iii) a proposed wide tapered multi-cell energy absorber. The optimization
technique relies on the design of experimental (DOE) method to enables finding the absolute extremum
solution through the response surface method (RSM) in MINITAB software. First, the car is modeled in
PATRAN and meshed in ANSA software. Then, the full-scale car model is analyzed in ABAQUS/CAE
software. The optimization has been accomplished through a multi-objective function to simultaneously,
maximize the observed energy and minimize the passenger’s deceleration. Results are verified by the
experimental results and effects of using non-equal importance coefficients for the absorbed energy and
passenger’s deceleration in the multi-objective function are also evaluated. Influence of the optimized
parameters on the frontal crash behavior of the vehicle body structure and passenger’s deceleration is
investigated, too.
Masoud Afrousheh, Javad Marzbanrad, Sanaz Abdollahzadeh,
Volume 9, Issue 4 (12-2019)
Abstract

Thin-walled structures play an important role in absorbing the energy in a low impact crash of vehicles up to saving lives from high impact Injury. In this paper, the thin-walled columns by using a hybrid Design of Experiments (DOE) and Ant Colony Algorithm (ACO) has been optimized. The analysis of the behavior of the nonlinear models under bending load is done using finite-element software Abaqus. The objective is to study the performance geometrically parameters of the columns using DOE-ACO approach.
DOE method is being applied to determine the effects of cross-sections, material, and thickness on the energy absorption; and the ACO method is used for finding more accurate thickness on energy absorption. Four types of thin-walled cross-sections, i.e., circle, ellipse, hexagon, and square are used in this study. The optimized results of DOE method show that aluminum alloy (Al-6061) and high strength low alloy steel (HSLA) square columns have a higher energy absorption in comparison with the other cross-sections. However, the amount of absorbed energy in two types of columns is equal but, 50 percent weight reduction may be seen in Al-6061 columns. The columns are re-optimized by ACO to find the best thickness in the last step.
In the following, by topology optimization participation, a new plan is proposed by the same thickness and 50% less weight, that has a higher crashworthiness efficiency by increasing SAE more than 70%. As a result of this plan is bridging the gap between standard topological design and multi-criteria optimization.
 

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb